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Preface 

This research is an investigation of the Vj = 0 -> Vj = 2 transition of nitrosyl bromide 

to expand the understanding of the role this molecule plays in the depletion of the ozone . 

layer and the Br*/NO energy transfer laser. The most recent work done on this transition 

was completed almost two decades ago. With the improvements in technology, the 

resolution of this work is two orders of magnitude higher than the previous study. This 

exploration required knowledge in a plethora of subject fields from vacuum system 

construction to chemical kinetics to numerical analysis. Since this inquiry was done to 

study the rotational energy manifold on the vibrational transition, a knowledge of 

quantum mechanics and the interaction of light and matter proved essential. Even though 

this knowledge was obtained through class work, applying this "lecture" knowledge in 

the laboratory proved to be an exciting and sometimes vexing experience. 

I would like to express my gratitude to my advisor, Major Glen P. Perram, for his 

open door policy, support, and encouragement throughout a research project which 

moved AFIT into a new realm of molecular study - asymmetric molecules. Thanks also 

go to Dr. David Weeks for the numerous hours of theoretical quantum mechanics 

discussions which lead to the understanding of the asymmetric top theory. Although Dr. 

Weeks showed me solutions for the UNDC enigma, Captain Charlie Brennan always took 

time out to steer me through the cold, iceberg-laden sea of this operating system. Finally, 

I owe a solid day of time and a big hug to my fiancee, Jerianne Shelton, who supported 

me through the long nights of computation and revision; thank you, Jerianne. 

Todd E. Wiest 
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Abstract 

Infrared Fourier transform spectroscopy of the first overtone of the nitric oxide (NO) 

bond stretch in nitrosyl bromide (ONBr) has been performed at a resolution of 0.02 cm 

to obtain the rotational parameters of the Vj = 2 energy level. On the order of 1000 

transitions have been observed for rotational levels up to J = 80 and K = 7. The 

calculation of the complete set of rotational energy levels of this asymmetric molecule 

requires the numerical diagonalization of four, tridiagonal matricies for each J. A non- 

linear least squares fit of observed transitions with J < 40 was accomplished using an 

approximation for the energy levels. From this fit, the maximum J value accurately 

approximated was determined to be twenty-four. The fit was reaccomplished for J < 24 

and the following rotational parameters were obtained: vo = 3563.03442 ± 0.00092, 

A= 2.793526 ± 0.000055, <B= 0.1264969 ± 0.0000056, C= 0.1207390 ± 0.0000022, 

A; = (1.649 ± 0.038) x 10"7, A^ = (-2.23 ± 0.17) x 10"6, AR = (1.577 ± 0.025) x 10"\ and 

-8        -1 
8j = (1.22 ± 0.29) x 10   cm . Monte Carlo techniques were used to determine the errors 

in the reported constants, and this analysis suggests the need to use higher J levels to 

determine the distortion constants. 
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HIGH RESOLUTION FOURIER TRANSFORM 

SPECTROSCOPY OF THE FIRST OVERTONE OF 

THE N-0 STRETCH IN NITROSYL BROMIDE 

1. Introduction 

1.1 Overview 

Nitrosyl bromide, ONBr, is a member of the nitrosyl halide family of molecules. 

This family also contains nitrosyl fluoride (FNO), nitrosyl chloride (ONC1), and nitrosyl 

iodide (INO). There are two major reasons to investigate these molecules: the halogens 

in these compounds have been linked to the chemical reactions believed to describe the 

ozone depletion cycle1 and the nitrosyl halides are a constituent produced in the reactions 

of possible infrared laser sources that rely on the transfer of energy from an electronic 

energy level of an excited halogen (F, Cl, I, Br) to a vibrational energy level in nitric 

oxide (NO).2 Much spectroscopic work has been completed on the other nitrosyl halides 

(FNO, ONC1, INO) to understand their vibrational and rotational structure, but only 

limited work has been reported for nitrosyl bromide. This research seeks to increase the 

knowledge of the energy levels of nitrosyl bromide to help provide an understanding of 

the role of the molecule in the two applications mentioned above. 



The depletion of the ozone layer over Antarctica has been linked to 

chlorofluorocarbons (CFCs). These chemicals contain halogens that deplete the ozone 

through reactions:1 

X+03->XO+02 (1.1) 

XO + NO->N02 + X (1.2) 

O + N02-> NO + 02 (1.3) 

where X represents the halogen (Cl, F, Br, or I). These three reactions have the net effect 

of ozone depletion: 

0 + 03->202 (1.4) 

Notice that in reaction (1.2) the halogen appears on the right side of the reaction which 

implies that it may react as shown in (1.1). If, however, this halogen encounters a nitric 

oxide molecule produced from reaction (1.3), the halogen in (1.2)may react with the NO ' 

molecule to form the nitrosyl halide: 

M+NO + X->ONX + M (1.5) 

where ONX is the nitrosyl halide. This reaction would limit the concentration of the 

halogen and thus assist in decreasing the rate of ozone depletion. 

The other reason to investigate these halides arises from an Air Force requirement to 

develop an airborne, laser-based countermeasure system. This system would be mounted 

either internal or external and be required to use limited power from the aircraft.2 Other 

requirements of the system include the power of the infrared (IR) laser to be in the 

kilowatt-class with wavelength tunability in the 3 to 5 ^.m region to prevent simple 

filtering as a counter-countermeasure.2 To achieve the power required over distances at 



which the system would be used, minimal divergence is desired, and the cavity 

configuration must allow for operation on the vibrating aircraft.2 

One of the possible candidates for this system is the Br*/NO energy transfer laser in 

which the excited bromine (Br*) transfers its electronic energy to vibrational energy in 

the NO. This places the NO in the second vibrational energy level which relaxes to the 

first vibrational state with the emission of a photon in the IR region. This photon results 

from a transition which meets the appropriate selection rules from one of approximately 

thirty rotational energy levels in the second vibrational state to a rotational energy level in 

the first vibrational state. The large number of possible energy differences produced in 

the transitions creates photons of many different wavelengths and thus provides the 

tunability required. The main complication involved in creating this system arises from 

the fact that Br2 and NO will react spontaneously to form ONBr when the mixture is 

allowed to equilibrate under room lights.3 Since the formation of this molecule 

drastically depletes the populations of NO and Br, it appears that the creation of this 

molecule severely limits the system performance, however, it has been reported that 

photolysis of a cell containing Br2 and NO may create Br which can then react with the 

ONBr:3 

Br + ONBr -> NO + Br2 (1.6) 

to increase the population of the NO and generate more Br2 which can then be converted 

to Br*. To understand this reaction, the potential energy curves of ONBr must be known. 

The creation of the ONBr potential energy curves requires a knowledge of the molecular 

constants for rotation and vibration. 



The most recent work on nitrosyl bromide was accomplished by Esposti et at using 

a Fourier transform spectrometer to study the absorption of IR light by ONBr. This study 

refined the molecular coefficients found by Laane et at for the fundamental band 

(Vj = 0 —> Vj = 1) of the NO bond stretch frequency in nitrosyl bromide. To gain more 

understanding of the rotational levels of the molecule, this research will study the first 

overtone (Vj = 0 —> Vj = 2) of the NO bond stretch in the molecule. 

1.2 Preliminary Considerations 

The NO bond in nitrosyl bromide first absorbs IR light at a wavelength of 

approximately 5.5 |im (Vj = 0 —> v} = 1), and the next absorption band of this stretch 

(Vj = 0 —» Vj = 2) occurs in the 2.8 \xm region. These two regions also contain the 

absorption of light by nitric oxide, 5.3 fim for the v = 0 —> 1 and 2.7 fim for the 

v = 0 -» 2. In both of these regions, the presence of nitric oxide can cause a difficulty in 

the assignment of the nitrosyl bromide spectrum. Much work has been done to 

characterize the energy levels of nitric oxide by Nichols et at and Olman et al? These 

studies, along with a study completed as part of this research, aided in the removal of any 

spectral features resulting from unreacted nitric oxide. The removal of these lines 

subsequently aided in the proper assignment of the absorption lines of nitrosyl bromide. 

1.3 Problem Statement 

In the past few years, a considerable amount of work has been done at the Air Force 

Institute of Technology (AFTT) on the possible development and characterization of a 

Br*/NO energy transfer laser to meet the Air Force airborne laser countermeasure 



requirement. Also, as the Air Force and the world grow more environmentally oriented, 

the reactions involved in the depletion of the ozone layer have become an important issue. 

To understand the role of the nitrosyl bromide in both of these applications, the potential 

energy curves of the molecule must be known. However, the complete curves cannot be 

created until a firm understanding of the different vibrational bands are known. Since 

only the fundamental vibrational band of the NO bond stretch has been documented, it is 

the goal of this research to expand the knowledge of this molecule to the first overtone of 

the NO bond stretch. To accomplish this goal, ONBr must be created from NO and 

distilled Br2, a spectrum of the first overtone of the NO bond stretch in ONBr must be 

recorded, and this spectrum must be analyzed to determine the molecular constants 

governing the motion of the molecule. 



2. Background 

2.1 Summary of Current Knowledge 

One of the earliest studies done to understand nitrosyl bromide was completed by 

Laane et al.5 This work studied the fundamental and combination vibrational bands of 

the three vibrations of nitrosyl bromide, the NO bond stretch (Vj), the bending of the 

molecule (v ), and the NBr stretch (v3), and determined the force constants associated 

with the general quadratic valence force field (GQVFF) constants. These values where 

81 79 
obtained for all possible combinations of the isotopes of bromine (  Br and   Br), oxygen 

(  O and   O), and nitrogen (  N and   N). Also, this paper discussed and tabulated the 

potential energy distribution, mean amplitudes, coriolis constants, and inertial defect data 

for specific isotope combinations. 

The information applicable to this research includes the NO bond stretch frequencies 

and the cited bond lengths and bond angle. The bond lengths appear in Table 2-1, the NO 

stretch frequencies in Table 2-2, and Table 2-3 contains the force constants obtained from 

the study. 

Table 2-1. Bond lengths in ONBr as measured with different 
experimental techniques.5 

Bond 
0 

Microwave (A) 
0 

e- Diffraction (A) 

N-0 1.15 1.15 

N-Br 2.14 2.14 

Br-0 . 2.81 2.85 

Bond Angle No Data 117° 



Table 2-2. NO bond stretch frequencies in cm' of ONBr for isotopes 
ofNandO.5 

16014NBr 16015NBr 18014NBr 18015NBr 

Vi 1799.0 1768.3 1751.5 1719.5 

2vi 3562.1 3503.1 3470.9 3408.1 

3vi 5296 5206 5158 5066 

4vi 6994 6878 No Data 6695 

Table 2-3. Force constants of ONBr. 

Calculated Value 

FNO 15.25 ± 0.04 md/Ä 

FNBr 1.13 ± 0.05 md/Ä 

Fa 1.13 ± 0.02 mdÄ/rad2 

FNO,NBr 1.47 ±0.36 md/Ä 

FNO,a 0.11 ±0.20 mdÄ/rad 

FNBI\CC 0.10±0.02 mdÄ/rad 

These values were obtained by the analysis of spectral data collected at 2 cm 

resolution. The experimental equipment included a Perkin-Elmer 521, Beckman IR 11, 

and a Cary 14 for the spectral regions of 4000-300 cm" , 300-200 cm" , and >4000 cm" , 

respectively. 

Since the above study was done at 2 cm   resolution, Esposti et al studied the NO 

stretch for the Vj = 0 —> Vj = 1 transition again at 0.0045 cm .   This study focused on 

determining the band origin and rotational constants for this transition and used this 



79 
information to determine the cubic force constants for both isotopomers (ON  Br and 

81 
ON  Br). 

To study this transition, Esposti et al prepared nitrosyl bromide by mixing NO and 

gaseous bromine at room temperature in a 20 cm long glass cell equipped with calcium 

fluoride (CaF2) windows.4 The Vi spectrum of the 2 mbar sample was recorded with a 

Bruker IFS 120HR Fourier transform spectrometer at the aforementioned resolution. A 

globar source was used with a potassium bromide (KBr) beamsplitter, and the spectrum 

was recorded with a mercury cadmium telluride (HgCdTe) detector. Calibration of the 

spectrum was accomplished by comparing the location of absorption lines due to residual 

water in the spectrometer with the reported locations as cited in the Handbook of Infrared 

Q 

Standards.   This research observed only a-type transitions (AK = 0) where the P and R 

branches were dominant with a weaker Q branch feature found on the shoulder of the P 

branch. Transitions for rotational levels up to J = 70 and K = 10 were observed in the 

very dense structure for both isotopomers. The band origins and rotational constants for 

79 81 
ON Br and ON Br obtained by this research appear in Table 2-4. 



Table 2-4. Molecular constants for the Vi fundamental band for both isotopomers. 
Band origins in cm'1, rotational constants in MHz. Standard errors in units of the last 
quoted digit are in parentheses for the fitted constants. *Both levels share common 
value.4 

ON79Br ON81Br 

Vi=0   ;   v, = l Vi=0    ;   vi = 1 

Vo 1798.751285(53) 1798.742722(57) 

A 85500.4620  ] 84720.73(11) 85482.944  j 84703.09(11) 

B 3747.07053  ; 3762.6039(44) 3722.34778  ] 3737.8017(47) 

C 3585.98785  ] 3598.9833(39) 3563.30894  [ 3576.2520(43) 

Aj (10-3) 2.852185  j 2.88560(37) 2.816479   ] 2.84996(39) 

AjK(10"2) -5.69179  |  -5.6952(27) -5.66109   j  -5.6676(31) 

AK 4.8255   j  4.7272(12) 4.8052    j  4.7096(13) 

5j (10-4) 1.57887   j  1.6145(47) 1.54934   ;  1.5881(51) 

ÖK(10-
2
)* 1.9859 1.938 

OJ (lO"10)* 4.068 4.068 

OJK (lO"7)* 1.2012 1.1179 

OKJ (105)* -2.9615 -2.9315 

4>K(10-
10
)* 2.149 2.149 

2.2 Theory 

The Schrödinger equation for a molecule, neglecting translation, is given by: 

HwY=£Jfv,rV (2-1) 

where KsV r is the Hamiltonian describing the motion of the molecule and £yV ris the 

energy of the molecule which can be broken into the following:9 

^s,v,r ~ As + ^v + Er (2.2) 



where E is the electronic energy, E is the vibrational energy, and Er is the rotational 

energy of the molecule. By using the Born-Oppenheimer approximation, the electronic   . 

energy can be found by solving the Schrödinger equation for the motion of the electrons. 

This solution yields values for the electronic energy which are dependent upon the 

nuclear separation. These electronic energy eigenvalues can then be used to generate the 

potential energy surfaces for the ground and excited states of the molecule. With the 

potential energy surfaces known, the nuclear motion can be studied by solving for the 

vibrational energy eigenvalues from the Schrödinger equation for this motion. To 

complete the solution of the Schrödinger equation in (2.1), the rotational energy 

eigenvalues must be computed. 

For triatomic molecules like nitrosyl bromide, the computation of the eigenvalues for 

the rotational energy levels is difficult. This difficulty begins with three different 

principle moments of inertia resulting from the unequal distribution of the mass of the 

nuclei (the ratio of the atomic weights being 5.70:1.14:1.00 for Br:0:N). The 

computation of eigenvalues is further complicated by the rotationally induced distortion 

of the molecule, particularly at high values of angular momentum. 

The classification of an asymmetric molecule, or rotor, is dependent upon the values 

of the three principle moments of inertia. These moments of inertia can be labeled as Ia, 

I, and I where I denotes the largest moment of inertia, Ib the next largest moment, and Ia 

the smallest. The inverse of these quantities, when multiplied by the appropriate 

constants, yield the rotational constants of the rotor:10 

10 



h2 

Ba =—  (2.3) 
2hcla 

where a is either a, b, or c. The body fixed axes can then be labeled a, b, c and the 

notation A, B, C is then used to denote Ba, Bb, and Bc, respectively.10 The body fixed 

system is used to describe the molecular orientation since the moments of inertia are 

constant, with the classification of the symmetry of the rotor being defined by the value of 

B. 

A rotor is classified as asymmetric when the values of the rotational parameters are 

such that A * B *■ C. The bounds of the value of B are given by the A and C values. 

When A = B, the rotor is symmetric and classified as oblate while the prolate symmetric 

case is one in which B = C for the rotor. There are numerous formulas that can be used to 

determine the degree of asymmetry associated with the rotor when A * B t- C, but the 

asymmetry of any rotor can be found by:11 

K=2B-A-C 
A-C 

where K is the asymmetry parameter and takes on the value of 1 for the oblate case and -1 

for the prolate case. 

Nitrosyl bromide is nearly prolate (B = C) with an asymmetry parameter of -0.996. 

By using the I representation given in Watson,10 all molecules are represented as shown 

in Figure 2-1. 

11 



ONBr in Body Fixed Coordinates 

b    0/ 

a    0 

"^r 

0 

c 

Figure 2-1. Nitrosyl bromide in the Ir 

representation where the molecule lies in the a-c 
plane of the body fixed coordinate system. 

The initial form of the Hamiltonian describing the rotational motion of ONBr can be 

found by invoking the rigid rotor approximation. The Hamiltonian for this approximation 

is 10 

Hrigid - BJb + CJc + Ma (2.5) 

where J^, Jc, and Ja are the angular momentum operators about the b, c, and a axes, 

respectively. This Hamiltonian does not properly deal with the asymmetric nature of the 

rotor, however, since in the quantum-mechanical representation the matricies are not 

diagonal. The Hamiltonian in (2.5) can be rewritten for the prolate (B = C) symmetric 

molecule as: 

12 



H rigid = C(Jb + Jc + JQ)~ 
CJa + AJ a (2.6) 

The diagonalization of the Hamiltonian can be accomplished by invoking the following 

operator transformation: 10 

j2=j2+j2+j2 

(2.7) 

Since B = C, the C parameter in (2.6) can be written as  C =—(B + C) without loss of 

generality. With this substitution and the operator transformation in (2.7), the rigid rotor 

Hamiltonian for the symmetric case is: 

Hrigid =\{B + C)P + A-±(B + C) Jr. (2.8) 

where J is the total angular momentum and k is the projection of J along an axis fixed in 

space with the eigenvalues: 

(J, k \J21 7, k) = 7(7 + 1) 

(j,k\%\J,k) = k2 
(2.9) 

where the allowed ranges of these eigenvalues are J = 0, 1,2,... and k = -J, -J+l,..., J-l, 

10 

For the asymmetric molecule, B * C and instead of (2.6), we find the Hamiltonian 

for the asymmetric rigid rotor is: 

Hrigid = \(B+C)[H + Jc + .?l}+f {U - Jc] 

2     2 

(2.10) 
72 J a 

By using the transformation in (2.7) and noting that: 

13 



B r~ 
\h -Jc\~izyb -Jc\- 2     2 

B-C 

'■Ehl 2A-B-C 
! Jb - Jc I (2.11) 

and: 

A---- = A--(B + C) 
2     2 2V ! 

the rotational Hamiltonian for the asymmetric rigid rotor is: 

(2.12) 

1 r2 Hrigid=T(5 + C)7z + A-±(B + C) {«+2^ib(«-4   (2-13) 

To model the distortion of the molecule as it rotates, a Hamiltonian with quartic and 

sextic centrifugal distortion terms is used where: 

£r(A) _ n3?2 H\% = <Rj£+CJ2 + M2-Aj(J2)2-AjKJ2Ja 

+ <S>jKÖ
2)2jl+®Kjl2ji+®KjZ 

+ Oy(7
2)3 

(2.14) 

+ \\pj02)1 +^JKJ2Ja +*KjiJl + J-\ 

The A, and 8, coefficients represent the quartic effects of the centrifugal distortion, the O, 

and <|>/ coefficients represent the sextic effects to the centrifugal distortion, the operators 

are given by: 

j = jb+JC +ja 

J+ - J.b + Uc 
A A A 

J_ = Jb- Uc 

(2.15) 

the (A) superscript denotes the use of the inverse asymmetry parameter in (2.4) where A 

and B are interchanged to reduce the representation of the system to a more convenient 
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form, and with this choice of representation, the A, B, and C parameters are transformed 

to the Ä, % and Cparameters using the following transformation: 

A= A + 2Aj 

<B = B + 2AJ+AJK-2&J-2SK (2.16) 

C=C + 2A/+AyA:+2Sy -28^ 

The matrix elements of this Hamiltonian in the | J, k) basis are given as:10 

E^k={j,k\H(^\j,k) = ^[(B + C]j(J + l) + U-^ + cik2 

-AjJ2(J + l)2-AJKJ(J + l)k2-AKk4+®jJ3(J + l)3 

+®JKJ2(J + l)2k2 +<PKJJ(J + l)k4 + ®Kk6 

Ek±2tk=(j,k±2\H%l\j,k) = (.±[B + c]-SjJ(J + l) (2.17) 

-hk[(k±2)2+k2] + 4>jJ2(J + D2 

+^JKJ(J + V[(k±2)2 + k2]+^K[(k±2)4 +k4]) 

x{[j(J +1) - k(k ± 1)][J(J + l)-(k± l)(k ± 2)]}2 

Notice that the | J,k) basis does not diagonalize the Hamiltonian of the asymmetric 

molecule as can be seen in (2.17) where an expression for off diagonal terms is given. 

The angular momentum does not have a component with a constant direction along a 

body-fixed axis of the rotating asymmetric molecule.11 

Since the | J, k) basis almost diagonalizes the rotational Hamiltonian for the 

asymmetric case and has physical meaning for the symmetric molecule, the definition of 

the required quantum numbers is almost determined. With the asymmetric case being the 

continuum between the symmetric prolate and oblate cases, the quantum numbers used 

are J, the total angular momentum, K , the quantum number used to label the energy 
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levels of the prolate symmetric top, and K., the quantum number used to label the energy 

levels of the oblate symmetric top. With these quantum numbers, the energy levels are 

labeled according to their possible k values for either the prolate or oblate case. This 

labeling is written as JK ,K • 

Physically, with the existence of two separate "k" quantum numbers, the energy 

levels for any angular momentum are found to split as a result of the "k" dependence of 

the matrix elements in (2.17). This phenomenon, known as K-doubling, is similar to the 

A-doubling found in linear molecules. For the asymmetric molecule, K-doubling results 

since angular momentum is not conserved along a particular body fixed direction. 

The diagonalization of the matricies generated by evaluating the expressions given in 

(2.17) can be simplified as shown in Appendix A. By writing the matrix form of the 

Hamiltonian for the system for a specific J, one obtains a non-adjacent, tridiagonal matrix 

(A.l) with matrix entries given by (2.17) as a function of k. This matrix can be simplified 

by noting that the matrix must be Hermitian to obtain real eigenvalues and the matrix is 

independent of the ordering of k such that Ek, k = Ek k,. This allows one to consider only 

the lower half of the non-adjacent, tridiagonal matrix. By using the transformation first 

derived by Wang:12 

7,0+} = |/,O) 

7)fc+} = ^(|/,/:) + |/,-*:)) (2.18) 

J,k-) = -^{\J,k)-\J,-k)) 
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the matrix can be transformed into a regular tridiagonal matrix that is of a block diagonal 

form (A.6). The eigenvalues of each of the submatricies of the block diagonal matrix in 

(A.7) can be found independently, and the method of labeling given in (A.8) can be used 

to denote the rotational quantum number, the k value of the prolate symmetric molecule 

energy level, and the k value of the oblate symmetric molecule energy level. 

Since nitrosyl bromide is asymmetric, much time and effort has been placed in 

describing the implications of this asymmetry. Due to this asymmetry, angular 

momentum is not conserved about a particular body fixed axis. This produces a 

phenomenon known as K-doubling. Mathematically, the implication of asymmetry is a 

system with a non-adjacent, tridiagonal matrix representation for the rotational 

Hamiltonian. The phenomenon of K-doubling requires new quantum numbers that will 

retain the physical situation of a rotating molecule yet simplify the mathematics. The 

quantum numbers chosen for this situation are J, the rotational quantum number, K , the 

quantum number used in the prolate case, and K , the quantum number used in the oblate 

case. With this selection of quantum numbers and the Wang transformation (2.18), a 

block diagonal matrix can be used to represent this system. This block diagonal matrix 

can be separated into four tridiagonal matricies which can be diagonalized independently 

to yield the eigenvalues which correspond to the rotational energy levels, labeled as JK ,K , 

for nitrosyl bromide. 

Even though the energy levels can be labeled, these levels cannot be measured for a 

quantum mechanical system. What is measurable are transitions between these energy 

levels. These transitions are the spectral lines seen when a spectrum has been recorded. 
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The type of spectroscopy being done determines which spectral features are important. If 

one is looking for the locations at which a sample emitted radiation, the important 

features in the unmodified spectrum are peaks. If absorption spectroscopy is being done, 

the key spectral features appear as valleys in the raw spectrum. 

For this research, absorption spectroscopy was completed for nitrosyl bromide. In 

absorption spectroscopy of molecules, the valleys in the recorded spectrum result from 

three types of possible rotational transitions which can take place between different 

vibrational energy levels. These transitions result from the absorption of incident energy 

that raise the molecular energy from a lower level, J", to a higher level, J'. The rotational 

quantum number of the higher level, due to the selection rules of the system, must be 

such that J'-J"= ±1 or 0. If heading is neglected and the rotational quantum number 

changes such that AJ = +1, the transition will be located at a higher energy than the 

energy difference between the vibrational levels. These transitions are labeled as R 

branch transitions. Transitions which are found at lower energies than the energy 

difference between the vibrational levels, once again neglecting the heading phenomenon, 

obey the selection rule AJ = -1 and are labeled P branch transitions. The transitions 

which follow the selection rule AJ = 0 are Q branch transitions, and these transitions 

would occur at the same energy as the energy difference between vibrational levels if the 

molecule did not distort and stretch while it rotated. 

Since nitrosyl bromide is an asymmetric top molecule, selection rules for the Ka and 

K values must also be followed. These rules further restrict the transitions allowed. For 
c 

nitrosyl bromide, the selection rules governing these "quantum numbers" are AKa = 0 and 
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AK = 1. Therefore, the only transitions observed for nitrosyl bromide can occur between 

rotational energy levels such that K ' = K " and K ' = K "+1 while AJ may be ±1 or 0. oj a a c c J 

If the | J,k) basis diagonalized the Hamiltonian of the system in the body-fixed 

coordinate system, analytical expressions could be written for the energy levels which 

implies that expressions for the locations of the transitions in each branch of the spectrum 

could be obtained analytically. These analytic expressions could then be used to 

determine the rotational parameters of the molecule. Because of the asymmetry and the 

lack of "good" quantum numbers, this luxury is not available with this technique, 

however, an approximation can be made to generate analytical expressions for the energy 

levels. 

2.3 Energy Level Approximation 

For a general asymmetric molecule, there is not an approximation. However, ONBr 

is nearly prolate, so a power series expansion in terms of J, K, and an asymmetry 

parameter is applicable. The use of this approximation can be twofold: (1) analytical 

expressions can be used to determine the validity of the spectral assignment by fitting the 

assigned transitions to the expressions and (2) the approximate expressions can be used to 

calculate the energy levels in a global fitting routine. 

2.3.1 Theoretical Development of the Approximation 

To generate an approximation that will represent the asymmetry of a rigid rotor, 

recall that the rotational Hamiltonian for a near-prolate asymmetric top is given by: 
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H rigid = BJI + CJ
2

C + AJI 

1 ~2 = -(B + C)J2 + 
2 

A (B + C) 
2 

72 + _ B~_c _Ol-Jh 
2A-B-C 

(2.13) 

2 ■ where Ja, Jf,, and Jc are defined as in (2.5), J   is defined as in (2.7), and A, B, and C 

are defined as in (2.3). 

In the representation which diagonalizes J   and Ja, the matrix elements that do not 

vanish in (2.13) are: 13 

{j,k\P\j,k) = 7(7 + 1), 

(7,fc|7^-7c
2|7^±2) = |{[7(7 + l)-Ä:(fc±l)][7(7 + l)-^±l)(Ä:±2)]}2 

(2.19) 

where 7 is defined as above and k is the prolate rotor quantum number, K , for ONBr. 

The expression in (2.13) can be rewritten as: 

^rigid — ^sym "*" "asym (2.20) 

where Hsvm is the rotational Hamiltonian for the symmetric top derived in (2.8) and: lsym 

H asym 

=  A-i(B+C)]{2E(7fc2-7c
2)} 

(2.21) 

where a different asymmetry parameter, e, has been chosen as: 

B-C 
e~2(2A-5-C) 

which is related to the asymmetry parameter in (2.4) by:11 

1K+1 

13 

(2.22) 

£=-- 
2K-3 

(2.23) 
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The eigenvalues of the rotational Hamiltonian in (2.20) can be calculated by treating 

Ha       as a perturbation. The energy levels obtained from the perturbation study are 

labeled in the same fashion as above and are calculated from a power series of the form: 

1 
F(JKa,Kc) = ^(B + QJ(J + V + A--(B + C) 

2 

A--(B + C) 
2 n=2 m=\ n=m 

(2.24) 

where FiJ?   K ) denotes the energy of the JK K level and the c    are the numerical 

expansion coefficients that describe the effect of asymmetry on the energy levels which 

are tabulated in Polo13 for m = 1 , 2, ..., 6. Thus the maximum number of terms that can 

2 
be used in the series expansion in m is seven, one for the k term and six for the 

Jm(J + l)m term. 

The energy levels calculated from (2.24) apply only to the rigid rotor. Centrifugal 

distortion terms must be included to explain the stretching of the molecule as it rotates. 

The energy level dependent equations for the distortion are listed in Polo's paper without 

splitting for K > 3 and with splitting for the Ka = 0 , 1, 2, and 3 levels. Below is the J 

dependent distortion contribution to the Ji,j energy levels:13 

F(/u ) = [-£>*+10*6-30^] 

+\-DJK - 4i?6 - 2R5 + (3R6 + 20R5 + 35 j ) e]7(7 +1) 

-Dj +SJ_-\2R6-+-R5+2SJ 72(7 + l)2 (2.25) 

+ ite+5')e 73(7 + l)3 
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where Dp DJK, DR, Sy, Rp and R6 are the coefficients used to describe the quartic 

centrifugal distortions and, for JI,M, the sign of the underscored terms must be reversed. 

The distortion constants above are related to the quartic distortion constants in the 

diagonalization theory by the following transformation:10 

AJ=DJ-2R6 

^JK=DJK+12R6 

AK=DK-10R6 (2.26) 

dK=-2R5--R6 
e 

where e is the asymmetry parameter defined in (2.22). 

By adding these expansions to the rigid rotor energy levels given in (2.24), the 

approximation can be used to determine the location of the transitions to aid in the 

assignment of the spectrum and to calculate the energy levels in a global fitting routine. 

2.3.2 Accuracy of the Approximation 

Since equation (2.24) contains a power series expansion that must be truncated at 

m = 6, the maximum J for which this approximation held was investigated. Since the 

expansion is in e, the contribution to the energy level of the first term in the power series 

in n for the m = 6 (i.e., n = 6 term) was used to determine the limitations of the 

approximation. 

The maximum J value which could be approximated was determined by setting the 

n = m = 6 term equal to the resolution of the spectrometer since any deviation of this 

amount in a calculated energy level would result in a calculated transition that would 
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deviate by the same quantity. Hence, the maximum rotational level that could be 

approximated was given by: 

Supper = v\-r T"^  (2-27) 
A-±(B + C) C66£6 

where c 1002401    as given by Polo 13 e = 5.04718 xlO-4  , A = 2.82628 cm"1 , 
66    79626240 

B = 0.125520 cm"   , C = 0.120062 cm"   for the v{ = 1 level, and the resolution of the 

spectrometer, RES, is 0.02 cm . The Vj = 1 level constants were used since the rotational 

constants for the Vj = 2 level were sought by this research and consequently unknown. 

By substituting the values listed, the approximate upper bound of J was calculated to be: 

•/upper - 42 (2.28) 

To ensure that the upper bound for the v2 = 2 level was not too high, the transitions 

studied with the approximation were limited to an upper bound of J = 40 following the 

trend between the approximate upper bounds calculated from the Vj = 0 and Vj = 1 

parameters (J     r for the Vj = 0 level was found to be forty-three). 

To calculate the location to truncate the power series in n, the second term in the n 

series for m = 1 (n = 2 term) was calculated at the upper bound as: 

(^upper(-/upper + l))q2e2 = 1-24 X lO^cm"1 (2.29) A-\{B+C) 

where A, B, C, /upper, and e are the same as in (2.27) and en = 1 • Therefore, only the 

n = m (first) term for the power series in n needs to be retained. 
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To determine the error in truncating the power series expansion in m for nitrosyl 

bromide, the contribution of the n = m = 7 term to the energy level was investigated at 

Jupper and found to be: 

A-±(B+C) (^upper^upper + if)^7 = 0.01779cm"1 (2.30) 

where A, B, C, c66, ./upper, and e are the same values as in (2.27) with the use of c66 was 

required since a numerical value for the c77 coefficient was not published in the paper by 

Polo.13 Since the n = m = 7 term contribution was on the order of the resolution of the 

spectrometer, the contribution of the n = m = 8 term was investigated by calculating 

(2.30) where all the values of seven are replaced with eight. This calculation showed that 

the n = m = 8 term would contribute 0.01622 cm"1. Hence, the truncation of the power 

series in m at m = 6 contains a truncation error at Jupper that is larger than the resolution of 

the spectrometer. This implies that the largest value of the rotational quantum number 

that can be approximated by this perturbational technique may be far removed from the 

value calculated in (2.27). 

The determination of the actual upper bound for J is critical since any erroneous 

calculation of the energy levels would produce a calculated transition that would not be 

within 0.02 cm   of the correct location. Hence, any calculation completed with that 

transition would result in residuals that were larger than the resolution of the 

spectrometer. 

Even though the above calculation was accomplished with the Vj = 1 constants to 

determine the validity and the error of the approximation, the trend in the approximate 

rotational energy levels properly predicted from the zero to first vibrational level should 
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hold well enough to be able to determine the approximate upper bound for the Vj = 2 

level as J = 40. However, the actual upper bound must be determined before an 

appropriate set of constants can be reported. 
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3. Experimental Apparatus and Procedures 

3.1 Fourier Transform Spectrometer 

3.1.1 Theory of Operation 

The Fourier transform spectrometer (FTS) is one of the instruments used for data 

collection in absorption spectroscopy experiments. The primary component of this 

instrument is the optical design used to obtain the signal. In this research, the FTS used 

employed a Michelson interferometer design as shown in Figure 3-1. 

«--► 

-« >- 
~* ►- 

3   / 

Figure 3-1. Michelson Interferometer, a. source, b. aperture, c. collimating 
mirror, d. beamsplitter, e. movable mirror,/, fixed mirror, g. focusing 
mirror, h. spectral filters, i. sample cell, and j. detector. 
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The light from the source of the interferometer passes through an aperture which 

limits the intensity of the light passing through the interferometer to the detector. This 

aperture also localizes the beam to improve the resolution obtainable from the 

spectrometer. 

After the light has left the aperture, the light is still diverging. Since this divergence 

is not desirable, a curved mirror is placed into the path of the beam to collimate it. A 

mirror is used instead of a lens for three reasons: (1) the loss of light intensity upon 

reflection from a mirror is less than the loss of light intensity upon passing through a lens, 

(2) the use of a mirror allows the beam to be reversed in direction and a more compact 

system can be built, (3) since mirrors reflect almost any wavelength of light incident on 

them, the interferometer can be used for a larger range of the electromagnetic spectrum 

without changing the collimating optical component, and (4) no chromatic aberrations are 

present. With the beam collimated, the entire amount of light passing through the 

aperture can be used to collect data. 

After the light is collimated, the light enters the components which comprise the 

Michelson interferometer. The collimated light is incident on a beamsplitter which splits 

the light intensity into beams of equal intensity to provide the greatest contrast. The light' 

that is reflected travels toward the movable mirror while the transmitted light passes 

through the beamsplitter and travels toward the fixed mirror. 

The light that is transmitted through the beamsplitter is incident on a fixed mirror 

which reflects the light directly back toward the beamsplitter. Since the distance traveled 
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by the light in this arm of the interferometer never changes, this arm can be referred to as 

the reference arm. 

The light that is reflected from the beamsplitter is incident on a movable mirror. As 

this mirror is moved, the distance traveled by the light changes. Since the path length of 

the light changes, this arm of the interferometer can be referred to as the test arm. Upon 

reflection of the light from the movable mirror, the light passes back through the front 

surface of the beamsplitter and is recombined with the light that traveled through the test 

arm. 

Because light from both arms of the interferometer have passed through the same 

amount of beamsplitter material, the only phase difference between the two beams of 

light results from the difference between the length of the test arm and the length of the 

reference arm. With the light traversing each arm twice, once to the mirror and once from 

the mirror, the optical path difference is twice the length difference for the two arms. 

This optical path difference creates a sinusoidal varying intensity pattern at the 

beamsplitter as shown in Figure 3-2 when the source of light is monochromatic. 

Figure 3-2. Typical interference 
pattern produced by a monochromatic 
source. 
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The interference pattern produced by the recombination of the light propagates 

through the sample cell to the focusing mirror. Once again, a mirror is chosen to focus 

the interference pattern for the same reasons listed for collimation. This mirror focuses 

the light from the interference pattern onto an intensity sensitive detector. 

3.1.2 Bomem Fourier Transform Spectrometer 

For this research, a Bomem DA-8 FTS was used. This spectrometer contains a 

Michelson interferometer with a movable mirror that could translate up to 50 cm and two 

possible light sources. The 50 cm translation allowed for resolution as low as 0.02 cm"1 

while the sources available produce either visible or infrared, non-monochromatic 

radiation. For this research, the globar source was used to produce the required infrared 

radiation. This choice was driven by the location of the absorption region of the 

Vj = 0 —> Vj = 2 transition of nitrosyl bromide. 

Since this source is non-monochromatic, a continuous distribution of wavelengths is 

produced. Each of these wavelengths travels through the Michelson interferometer 

shown in Figure 3-1, where the beamsplitter chosen was made from calcium fluoride 

(CaF2). Upon recombination at the beamsplitter, each wavelength of the light produces a 

unique interference pattern similar to the pattern shown in Figure 3-2. This infinite 

number of interference patterns produces an interferogram, and this interferogram is 

focused onto the detector. By Fourier analyzing the interferogram recorded by the 

detector, the signal recorded can be broken into components where each component 

results from a different wavelength.14 
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For this research, a cell containing nitrosyl bromide was placed internal in the FTS in 

the sample chamber. This placed the cell before the focusing mirror and a Belov 

Technology Co., Inc. HgCdTe detector with an operating range of 800-5000 cm"1. As the 

infrared beam passed through the cell, photons of the appropriate energies where 

absorbed by the nitrosyl bromide. The absorption of these photons resulted in an 

interference pattern of reduced intensity for that wavelength. When the Fourier transform 

of this modified interferogram was taken, the wavelengths of light with reduced intensity 

were minimums.14 To improve the signal to noise ratio of the interferogram, spectral 

filters made by Corion, a 2.5 |im long pass and a 3.0 |im short pass, were chosen to 

eliminate wavelengths emitted by the source that would not be absorbed by the 

Vj = 0 -> Vj = 2 transition in ONBr. 

3.1.3 Data Collection and Spectrum Analysis Software 

The FTS used was controlled via ethernet connection by an in-lab, IBM 486/DX50 

computer. The software package used for this task was the Bomem PC-DA Version 1.1a. 

This package allowed numerous settings for the aperture, resolution, gain, the number of 

scans to be taken, the beamsplitter material, and the source used with typical settings of 

1.5 mm, 0.02 cm"1, sixteen, sixty-four, CaF2 beamsplitter, and globar source, respectively. 

This software also contained menus that could start different experiments on the FTS. 

The experiments utilized for this research included the phase and the raw spectrum. In the 

phase experiment, the spectrometer finds the zero path length difference of the two arms " 

of the interferometer while in the raw spectrum experiment, the spectrometer records the 

detector response to the intensity change of each interference pattern in the interferogram. 
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When the data had been collected for a particular experiment, the PC-DA software had 

the capability to take the numerical Fourier transform of the data. 

To view the Fourier transform of the data, the spectrum analysis software, GRAMS 

386 Version 2.03B by Galactic Industries Corporation, was used. This software was 

designed for use with the PC-DA software so file conversion was not required. Upon 

viewing a spectrum, there are numerous numeric techniques and several options in the 

software which can be implemented. For this research, the background ratio option, the 

"Absorbance" numerical technique, and the peak picking option where used. These three 

items will be discussed in Chapter 4. 

3.2 Vacuum System 

Since nitrosyl bromide is not readily available for purchase, the gas had to be created 

using nitric oxide (NO) and bromine (Br2) in gaseous states. These gases were mixed in a 

vacuum system constructed in the lab. The schematic diagram of this system appears in 

Figure 3-3. 

Roughing Pump 

Cold Trap 

OS) -> Valve 
M 
(§) —► Metering 

Valve 

a 

Baratron 

Pressure 
Monitor 

M 
 §§ ►to NO 

Figure 3-3. Vacuum system used to create nitrosyl bromide. 
a. distillation tubes to purify the Brr 

31 



When the construction of the vacuum system was complete, the vacuum system was 

brought down to less than 0.01 Torr with the roughing pump, and leak tests where 

performed. The vacuum system was considered sealed when the data from the fifth leak 

test showed a leak rate of 0.7 mTorr per minute. 

When the vacuum system was sealed, the liquid bromine, obtained from Spectrum 

Chemical Manufacturing Corp., was transferred from storage to the vacuum system. 

Since the bromine could contain impurities resulting from prolonged storage time, the 

roughing pump was used to bring the system down to less than 0.01 Torr, and the natural, 

isotopic abundance bromine was purified. This purification was accomplished through 

three freeze/pump/thaw cycles in which the empty distillation tube in Figure 3-3 was 

chilled to 77° Kelvin, the valve on the tube containing the bromine was opened, and the 

pure bromine vapor was cryogenically pumped into the chilled distillation tube. Both 

tubes were sealed, and the frozen liquid bromine in the initially full tube was allowed to 

thaw to room temperature to create more bromine vapor in that tube. One cycle of this 

process was complete when most of the bromine from the full distillation tube had been 

pumped to the other tube. 

The NO used for this experiment was obtained from Matheson Gas Products, Inc. 

This bottled gas was placed in the gas cabinet in the lab, and a tube made of Teflon was 

connected from the outlet of the gas bottle to the vacuum system. 

3.3 Absorption Cell 

In order to obtain a spectrum of the.gaseous mixture produced in the vacuum system, 

an absorption cell was designed. This cell consisted of a 20 cm Pyrex glass tube of 2" 
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outer diameter. At 5 cm from one end of the cell, a 1" piece of 1/2" outer diameter Pyrex 

tubing was attached by a glass blower to obtain a port which could connect the cell to the 

vacuum system. On both ends of the cell, 2" diameter calcium fluoride (CaF2) windows 

made by Ealing were attached. These windows allowed visible and IR light to pass 

through the cell with minimal absorption. The windows were attached to the end of the 

cell with Torr Seal and allowed to dry for one day. Torr Seal was chosen since it 

exhibited the least amount of bromine absorption in previous experiments.14 

3.4 Creation of ONBr 

Previous research has shown that nitrosyl bromide can be formed by the following 

reaction:5 

Br2+2NO<->20NBr (3.1) 

The rate at which equilibrium is established for this reaction has been reported as 

9        6 -1-1 
2.6 x 10 cm mole   sec   which implies that ONBr will be formed in one to four hours. 

However, when NO and Br2 are placed in a sample chamber under room lights, 

equilibrium occurs more rapidly by the following reactions:15 

Br2 + /*v->Br + Br 

Br + N0 + M-4 0NBr + M 

where hv represents the energy of a photon of light and M is a third body needed to 

conserve energy. The equilibrium rate constant for the second reaction in (3.2) is 

-33        6 -2        -1 16 
8.7 x 10    cm molecule   sec . 

For this experiment, ONBr was created by initially releasing bromine into the 

vacuum system and cell by opening the Valve of the distillation tube which contained the 
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liquid bromine. Due to its vapor pressure, gaseous bromine was also in the tube, and this 

gas was introduced when the valve was opened. The valve remained open until 

30.54 Torr of bromine was contained in the vacuum system. Nitric oxide was introduced 

after the bromine tube had been sealed. Since the NO was under pressure, none of the 

bromine currently in the system entered the NO line. The NO was added until the 

pressure of the system was 61.40 Torr. By the law of partial pressures, 30.86 Torr of NO 

was present. The cell was then closed off from the rest of the system, and a halogen light 

was shined down the axis of the absorption cell to act as a catalyst for the reactions in 

(3.2). To guarantee that the reaction had reached equilibrium, the laboratory lights were 

left on, and the sample was allowed to equilibrate under these conditions for one day. 

The amount of ONBr actually present in the cell at equilibrium can be determined 

from: 

let 

[NOTeq[Br2]eq 

[ONBr]^ 
Keq- 2  (3-3) 

[NO]0=[NO]^+[ONBr]eg (3.4) 

2[Br2]0 = [ONBr]eg + 2[Br2]eg (3.5) 

9        6 -1-1 
where K   is the equilibrium constant (2.6 x 10 cm mole   sec ), [NO]o and [Br2]o are 

the initial concentrations of nitric oxide and bromine, respectively, and [NO]  , [Br ]  , 

and [ONBr]   are the equilibrium concentrations of nitric oxide, bromine, and nitrosyl 

bromide, respectively. By solving these equations, a relationship between the [Br2]o and 

the [ONBr]   can be found as a function of the [NO] . Upon substituting the initial 
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pressures of the gases, the amount of ONBr present in the cell was 29.93 Torr with 

roughly 0.04 Torr of NO remaining in the cell. 

To verify the presence of nitrosyl bromide in the sample, the absorption cell was 

-l 
placed into the sample chamber of the Bomem FTS and a low resolution, 4 cm , 

spectrum was taken from 3500 - 3650 cm . This spectrum showed absorption due to 

nitrosyl bromide, however, there was a section of the P branch which had only seven 

percent transmission. With this minimal amount of transmission, detector noise could 

result in intensity fluctuation in the recorded data. When the Fourier transform of this 

data would be taken, these noise fluctuations would produce non-physical spectral 

features. To eliminate this possible problem, 11.17 Torr of the sample was removed 

leaving a total of 19.10 Torr of ONBr in the cell. The absorption spectrum of the sample 

was taken again, and this time seventeen percent transmission was recorded for the same 

section of the P branch. This amount of transmission reduced any detector noise 

problems while still obtaining significant absorption to allow data collection for spectral 

features resulting from high rotational energy transitions. 
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4. Results 

4.1 Data Collection 

The spectrum of the Vj = 0 -> Vj = 2 transition in ONBr was obtained by placing the 

sample cell containing 19.10 Torr of nitrosyl bromide in the Bomem FTS sample 

chamber and evacuating the sample and source chambers to 0.23 Torr to remove as many 

air-based water and carbon dioxide molecules as possible. This spectrum was taken at 

high resolution, 0.02 cm . The region of interest, 3500 - 3625 cm , was scanned sixty- 

four times and coadded. The aperture was set to 1.5 mm diameter to obtain the high 

resolution required while supplying a sufficient signal, a mirror speed of 0.2 cm/s was 

used, and no apodization, named boxcar in the PC-DA software, was used to cancel any ■ 

"ringing" effects that can occur. 

These "ringing" effects can be traced to the mathematical problem of taking a 

Fourier transform of a signal that is of finite extent. The extent of this signal is limited by 

the translation of the movable mirror. When the mirror reaches the position of maximum 

translation, the data, which can be represented by a smoothly varying function up to that 

point, abruptly stops. When the Fourier transform of this data is taken, this abrupt stop of 

the data causes spurious effects in the spectrum that can be seen next to sharp absorption 

peaks. 

By viewing the spectrum in the GRAMS/386 software, one immediate feature can be 

noticed: both ends of the spectrum exhibit linear trends in the intensity transmitted. This 

is clearly shown in Figure 4-1. 
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Figure 4-1. Raw spectrum of 19.10 Torr of ONBr. Notice the somewhat linear trends in 
the intensity at both ends of the spectrum and the density of the spectral features. 

The trends at the edges of the spectrum and across the center region do not allow for 

a consistent baseline. Since the intensity can be used to help understand the physics 

governing the transition, a changing baseline is not desirable. 

Not only does the spectrum require modification to correct the sloping baseline, the 

spectrum in Figure 4-1 represents the absorption of all elements in the sample chamber, 

i.e., any item between the interferometer and the detector. To generate the appropriate 

modifications to the raw spectrum in Figure 4-1, a background spectrum was recorded 

with an evacuated cell and spectral filters in the sample chamber of the FTS. This 

guaranteed that the only difference between the spectrum in Figure 4-1 and the 

background spectrum would be absorption due to the presence of ONBr. The background 

spectrum obtained is shown in Figure 4-2. 
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Figure 4-2. Background spectrum taken to eliminate various absorption phenomena not 
connected to absorption by ONBr. 

The spectrum in Figure 4-2 was taken at 0.1 cm   resolution with 64 coadds, no 

apodization, an aperture setting of 1.5 mm, and a mirror speed of 0.50 cm/s. The pressure 

of the source and sample chambers was 0.32 Torr. 

The most notable difference between the two raw spectra shown in Figure 4-1 and 

Figure 4-2 is in the region between 3530 cm   and 3600 cm . The only difference 

between the spectrum in Figure 4-1 and the one in Figure 4-2 is the presence of ONBr in . 

the absorption cell, therefore the absorption of light in this region must be caused by 

ONBr. 

4.2 Spectrum Analysis 

With the background spectrum taken, the data collection was complete, and the two 

spectra needed to be combined to produce the desired spectrum which will represent only 
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absorption by ONBr. To eliminate the background in Figure 4-1, the "Absorbance" 

mathematical procedure was used where the new spectrum is calculated from:17 

Samplefile 
Absorbance file = - log 

Background file 
(4.1) 

where the Absorbance file is the new spectrum produced, the Samplefile is the raw 

spectrum taken with ONBr in the cell, and the Background file is the raw spectrum taken 

with the evacuated cell and spectral filters. 

With the background taken out of the raw spectrum in Figure 4-1 the only features 

left are spectral features describing the absorption of IR light by ONBr. The resulting 

absorbance spectrum is shown in Figure 4-3. 
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Figure 4-3. Absorbance spectrum of ONBr where the spectral features (lines) 
corresponding to absorption transitions are positive. 

Not only did the use of the "Absorbance" routine make the spectrum more 

understandable, it also allowed the use of the peak picking routine in the software 

package. This package can be used with either default or user-defined settings. The latter 
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were opted for since a comprehensive listing of the spectral peaks was desired. The user- 

defined settings included peak location methods which relied on the change in the slope 

of the line to find a peak in the spectrum and decide where it was located. Also, 

sensitivity settings could be used to define a threshold for peaks that were not intense 

enough. Figure 4-4 shows a piece of the spectrum in Figure 4-3 from the R branch with 

lines to distinguish the different Ka, Kc combinations for a particular rotational level. 
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Figure 4-4. Blow up of ONBr absorbance spectrum in the R branch. Lines above the 
spectral features depict the different K ,K lines for a particular J. 

Once the peaks were found, the energy location in cm , the intensity, and the label of 

the peak where output to a file and printed. For those peaks that were not labeled, labels 

where added by hand through the use of the GRAMS/386 software which could be used 

to find points where the slope changed. This method was not as precise and a lot more 

tedious than the peak picking routine, however, it proved extremely useful in determining 

the width of the spectral lines. 
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The width of a spectral feature can be used to determine if there is too much of the 

sample in the absorption cell. If this is the case, the spectral features will broaden, 

referred to as pressure broadening, to a width much larger than the resolution and the 

percent of the light transmitted will be low as discussed previously. The spectral features 

shown in Figure 4-4 are clearly broader than the resolution, 0.02cm , however, only the 

bases of these peaks are wide. The features, often three or more, on top of these broad 

bases are on the order of the resolution. This implies the broadening of the spectral peaks 

is not due to pressure broadening but to a blending of spectral peaks. 

Blending occurs where one transition peak reaches the maximum absorption as 

another peak begins to exhibit some absorption. As the first peak begins to disappear the 

second peak has gotten closer to the maximum and the two peaks intensities superimpose 

to produce a value even higher than both peaks at that point. When numerous peaks lie 

within resolution of each other, this blending becomes very severe and the recorded peaks 

appear as one, substantially wider peak. 

4.3 Spectral Assignment 

The most difficult part of spectroscopy is the assignment of the transitions 

corresponding to the peaks. This assignment process is critical in the determination of 

the physical parameters, A, % C, etc. If the assignment is not done properly, the 

determined values for these parameters will not represent the physical situation and this is 

the sole purpose for studying the rotational transitions of a molecule. 

Typically, there are numerous methods which can be employed to determine the 

transition responsible for a given peak. Since the physical situation resulting in the 
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spectrum is the rotation of a molecule, the molecular forces and structure of the molecule 

can be used to aid in the spectral assignment. This procedure, however, relies heavily on 

previously reported force constants or approximations to these constants made from 

other, similar molecules. If any of these constants, either reported or approximated, are 

wrong, the corresponding assignment will be inappropriate, and the entire experiment 

will not produce new constants consistent with the physical interpretation. 

A second method which can be employed to assign the spectrum relies on the trends 

between different spectral features. These trends can be determined without the use of 

previously reported numbers and plots can be made to graphically reinforce and improve 

the spectral assignment. These trends represent the difference between two transitions 

that have a change in one of the quantum numbers, i. e., either J is changed by one for the 

second transition and the other quantum numbers stay fixed or the J is held fixed for both 

transitions and one of the other quantum numbers is changed for the second transition. 

Since this method relies on the difference between transitions and the transitions are 

obtained through a difference in energy levels, this method is called the second- 

difference, A2, method. The best way to explain the formulation of the A2 equations is by 

considering a linear molecule under the rigid rotor approximation since the equations for 

the energy levels of this molecular type are tractable and the procedure is analogous for 

other molecular types. 

The rotational energy level of a linear molecule can be written as: 

F(J) = BvJ(J + l) (4.2) 
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where F(J) denotes the energy level as a function of the rotational quantum number and 

B is the rotational parameter as defined in (2.3) where the subscript v denotes that the B 

parameter is dependent on the vibrational level. To represent the upper vibrational level 

of a transition, the J and B are denoted as J' and Bv', respectively. Similarly, the 

representation for the lower vibrational level is J" and B ". 

By using the notation above, a P branch transition of a diatomic molecule can be 

represented by: 

P(J)=v0 + % J'(J' + l)-BZJ"(J" + i) (4-3) 

where the P(J) is used since the equation represents a P branch transition, the Vo is the 

difference between the two vibrational levels in question (referred to as the band origin) 

for the transition, and the lower energy level is subtracted from the upper energy level. 

Recall that the P branch transitions follow the selection rule AJ = -1 which implies that 

J' - J" = -1. Hence, (4.3) can be simplified by setting J' = J" - 1. The new equation is 

only in terms of J' so J' is set to J. The corresponding P branch transition becomes: 

P{J)=y0-{B^+B^)J + (B^-B^')J2 (4.4) 

As stated previously, the A2 is formed between two transitions with a change in one 

quantum number. Since the only quantum number in (4.4) is J, the only A2 that can be 

formed is one in which J is changed. The most logical choice for this change is +1, thus 

we have: 

p(j+D- P(/) = [V0-(äJ +K)(j+D+(ä; - Bfxj+i)2] 
(4.5) 
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This equation can be simplified to produce the following relation: 

A2P = -2B^ + 2(B;-B(;)J (4.6) 

where A2? is used to denote that the second difference formed is for the P branch. By a 

similar procedure, both the Q and R branch A2 expressions can be obtained by 

substituting J' = J" and J' = J" + 1, respectively, where the J' = J" - 1 simplification was 

invoked. 

After obtaining a fit of a A2 equation to the corresponding A2 data with physically 

realistic values for the parameters, the residuals can be viewed to determine the quality of 

each data point. When a A2 data point has a residual which lies outside the resolution of 

the spectrometer, the two transitions creating the A2 data point must be reviewed. Upon 

reviewing the transitions creating this errant A2 data point, the label(s) of the transition(s) 

can either be moved to an adjacent spectral feature that does not disrupt the rest of the 

data or considered misassigned and subsequently removed from the data set. 

Since the A2 data used to obtain these fit parameters is only a small subset of the 

data, these values are not precise. However, the values can be used as the initial guesses 

to a global fitting routine which calculates the best rotational constants for the entire data 

set. Through the use of various second differences, the entire spectral assignment can be 

made and validated quite readily. When all the A2 fits yield spectral constants of roughly 

the same value, the spectrum has been properly assigned. This guarantees that the 

transitions sent to a global fitting routine will be a valid assignment representing the 
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physical situation, and the A2 method can supply initial guesses for the rotational 

parameters. 
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5. Discussion 

The goal of this research was to find the set of rotational parameters that accurately 

replicate the observed rotational transitions for the v = 0 —> v. = 2 transition in ONBr. 

The validity of these constants are heavily dependent on the assignments made to the 

observed transitions. To assign the spectrum properly, the constants should be known. 

Thus a circular argument is created. 

This circular argument can be circumvented by using the appropriate A2 expressions 

to find trends in the data. The formulation of these equations is dependent on analytical 

expressions for the energy levels. Since ONBr is asymmetric, the exact energy levels 

could not be expressed analytically, however, an approximation for the energy levels does 

exist. 

Up to this point, the exact region of validity for the approximation has not been 

determined. The approximate upper bounds for J in the Vj = 0 and Vj = 1 levels have 

been calculated, and an approximate upper bound for J in the Vj = 2 level has been 

determined. However, the errors in these upper bounds were calculated with the largest 

K -dependent expansion coefficient for the highest order term in the series that is 

published.    While this calculation does not properly reflect the contribution of the terms 

that have been truncated, this series converges very slowly. Therefore, the exact J value 

which can be approximated to within the resolution must be determined before the 

rotational constants describing the Vj = 2 rotational energy levels can be accurately 

reported. 
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The asymmetry approximation has been used to generate the A2 trends to aid in the 

spectral assignment and in a global fitting routine. It is quite possible that the exact upper 

bound for J can be determined from the application of either of these uses of the 

approximation. 

5.1  Validation of Spectral Assignment 

As previously discussed, second difference equations can be used to verify the 

spectral assignment and the parameters obtained after fitting these equations to the 

appropriate second difference data can be used as initial guesses to a global fitting 

routine. For ONBr, the number of A2 equations that could be investigated was large. 

This is clear when the definition of the A2 method is recalled. As both quantum numbers, 

J and K , can be changed, A2 equations in which Ka is held fixed for both transitions and J 

is changed by one (same method as derived in Chapter 4.3) or J held fixed and Ka allowed 

to change are applicable to this study. In view of the information that can be obtained 

from a fit to the A2 data by the corresponding equation, the selection of the correct A2 

trend was important. The A2 trends studied were: 

1) The trend in the difference between JQ} and (J+l)0 (J+1). 

2) The trends in the difference between J.. and J  ,  ^ where m = 1,2, or 3. 7 0,J m,J-m+l 

3) The trends in the difference between JQ} and Jn }n where n = 1 , 2,..., 6. 

where J will be used here and throughout the rest of the paper to represent the rotational 

quantum number of the lower energy level in a transition unless otherwise indicated. 
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The actual assignment of the spectrum becomes an iterative process in which the 

parts of the spectrum are assigned, the A2 for the above trends are calculated, and the 

appropriate A2 equation is fit to the data. The data points with residuals greater than the 

resolution are removed, and the fit is reaccomplished until all the residuals were within 

the resolution. This procedure is repeated for each trend in the branch until 

approximately all the spectral features of the branch are labeled with the corresponding 

transition. 

Before the curve fitting procedure could be implemented for the spectrum, some 

possible difficulties needed to be addressed. These difficulties include the consequence 

of trying to extend the approximation past the upper bound and the number of parameters 

kept in the analytic A2 expressions to properly represent the data in the valid region of the 

approximation. 

By determining the consequence of extending the approximation past the upper 

bound, the characteristics of the breakdown of the'approximation can be studied. An 

understanding of these characteristics may prove vital in the determination of the exact J 

value that can be approximated. 

5.1.1 Limits of Analytical A2 Expressions 

To examine the validity of the A2 equations and the types of erroneous curve fits that 

do not result from a faulty spectral assignment, the A2 expressions obtained from the 

approximation were fit to previously published data. The Vj = 0 —> Vj = 1 data obtained 

from Esposti et al was used to accomplish this validation. 
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As a result of the validity of these published transitions, the only pitfalls encountered 

resulted from the inability of the approximation to replicate the data. In Figure 5-1 the 

second difference fit obtained for the trend in the JQ to J2 2 transitions in the R branch as 

a function of the rotational quantum number is plotted. In this and all subsequent A2 

plots, the nomenclature used gives the K value of the first transition and the Ka value for 

the second transition in the superscript, the branch analyzed by the data and the curve fit, 

0,2 
and the K value for the second transition, e.g. A.   R (K = J - 2) represents the second 

C Z C 

difference formed from the transitions J. , and L, _ where the K value of the second 
0,J 2,J-2 c 

transition is J - 2 and J denotes the lower energy level for each transition. 
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Figure 5-1. Second difference data and curve fit for the trend from JQ to 

J2    as a function of J for J < 40. Transitions used to generate data points 

were obtained from Esposti et al.4 Expression fit without distortion 
parameters in expression. 

The data in Figure 5-1 is well represented by the A2 equation used for the fit. 

However, this fit does not reveal any information about the exact J limit of the 
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approximation for the Vj = 0 —> Vj = 1 transition since the parameters of this fit were 

within 0.2 percent of the values published by Esposti et al. 

To determine the effect of trying to use the approximation at values higher than the 

upper bound, the data used in Figure 5-1 was extended to include data up to J = 70. The 

resulting A2 fit to this data appears in Figure 5-2. 
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Figure 5-2. Same A2 fit as above for J < 70. 

This fit does show what will happen when the approximation breaks down. 

However, without the distortion terms included in the A2 fit in Figure 5-2, the inability of 

the approximation to represent the data was not conclusively caused by the breakdown of 

the asymmetry expansion. To determine the cause of the poor fit in Figure 5-2, the 

centrifugal terms were included in the analytical expression for the A2 data plotted in the 

figure above, and this equation was fit to the same data. A good fit was obtained, but the 

values of the fit parameters representing the distortion constants showed liberal 

differences from the published constants with the largest of these differences being an 
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order of magnitude. This lead to the assumptions that the approximation had broken 

down and that the analytic A2 expression containing the distortion parameters was 

somewhat parametric and consequently fit the data well. 

The inability to reproduce the published distortion values from a fit to the data for 

J > 40 lead to the assumption that the asymmetry approximation breaks down above the 

approximate upper bound. However, the requirement of distortion parameters in the A2 

expression was still not determined for the J < 40 range. This was resolved by fitting the 

A2 data in Figure 5-1 using the A2 expression with the distortion parameters included. 

The fit obtained was better than the fit in Figure 5-1 which can be expected since there 

are more parameters used. In spite of a better fit, the accuracy obtained in the values of 

the fit parameters was only on the order of 0.01 cm . Any global fitting routine used 

should be able to find the best set of constants with initial guesses that are moderately 

close, so the difference of 0.01 cm   in the values of the parameters does not necessitate 

the use of these parameters in the analytic A2 expressions. 

5.1.2 A2 Fits to Vj = 0 -> vx = 2 Spectrum 

With the knowledge of the pitfalls that result from using data above the approximate 

upper bound, the assignments made for the P branch of the Vj = 0 -»Vj = 2 transition 

were investigated with analytical A2 expressions that contained only the A, B, and C 

rotational parameters. All of the second difference plots and the subsequent residuals, the 

distance from each data point to the curve fit to the data, that are not discussed herein 
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appear in Appendix B. There are two plots which require a discussion of noteworthy 

features. 

The feature exhibited by the first set of plots is the overfitting of data. Although the 

actual overfitting occurs for a range of J values that are not appropriate for the 

approximation, the fine balance between the parameters of the fit for J values less than 

the approximate upper bound can be appreciated by viewing an extension of the 

approximation. In Figure 5-3 the A2 trend JQJ to (J+1)0(J+1) is shown for the 

Vj = 0 -» Vj = 2 transition. 

-0.14 
A2°'°P (Kc = J) 

Figure 5-3. Curve fit forA2 trend from JQJ to (J+1)0(J+1). The fine balance 

between the parameters results in the fit of a twelfth order polynomial to a 
linear set of data without overfitting. 

The equation fit in this plot is a twelfth order polynomial in J. This high order 

polynomial was generated by the A2 of the approximate analytical energy level 

expressions and, amazingly, it fits the somewhat linear data rather nicely as can be seen in 
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Figure 5-4 where the residuals of the fit above are plotted. With all of the residuals of the 

data within the resolution of the spectrometer in Figure 5-4 and physically realistic values 

for the fit parameters, it is clear that these spectral features follow an appropriate trend. 
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Figure 5-4. Residuals for trend shown in Figure 5-3. Note that the upper and 
lower bound of the residual axis is equal to the resolution of the spectrometer. 
Also note that all residuals lie within this region. 

When the range of J is increased for the plot in Figure 5-3 not only is the range of J 

increased above the approximate upper bound, but the fit shows the expected overfitting 

of a high order polynomial. This occurs because the fine balance that allowed the data to 

be fit in Figure 5-3 has been lost with a clear breakdown of the asymmetry 

approximation. The overfitting is shown in Figure 5-5. 
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0'°P(KC = J) 

Figure 5-5. Example of overfitting in Vj = 0 -> Vj = 2 data resulting 

from the loss of the fine balance between rotational parameters in the 
approximate energy level expressions when the approximation breaks 
down. 

The second feature of the curve fits that was observed originated in the A2 trend from 

JQ j to Jj j r This peculiarity resembled the overfitting found in Figure 5-5, but the J value 

at which the approximation seemed to breakdown was eighteen. The A2 data for J < 18 

for the trend is fit with the corresponding A2 expression in Figure 5-6. The residuals for 

this fit appear in Figure 5-7, and the A2 data for J < 40 for the trend is fit with the same 

expression in Figure 5-8. 
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Figure 5-6. A trend fit with appropriate equation for valid region of J. 
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Figure 5-7. Residuals of fit in Figure 5-6. All residuals are within 

0.02 cm"1. 
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A2°'1P(KC = J-1) 
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Figure 5-8. Overfitting resulting from the apparent break down of the 
approximation for this trend which could be attributable to inappropriate 
expansion coefficients. 

0,3 
The overfitting shown in Figure 5-8 was also witnessed in the fit to the A2 P 

(K = J - 2) data for J > 25. This apparent overfitting in these two particular cases could 

be linked to the exact value of J at which the approximation breaks down, yet these two 

A. expressions began overfitting at different values of J. To get a better understanding of 

the origin of this proposed breakdown, codes were written in Mathematica® from 

Wolfram Research to produce the rotational energy levels for the v2 = 1 level using the 

numerical diagonalization (source code in Appendix C) and approximate energy level 

expressions. The difference between the location of the energy levels calculated by each 

code was obtained. This comparison showed that the Jl     approximate energy levels 

deviated from the diagonalization energy level by 0.02 cm   at J = 18. When the J3 
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-1 
energy levels where compared in a similar fashion, the deviation reached 0.02 cm   for 

J > 22 where the 0.02 cm   difference was chosen as the maximum allowed error in the 

energy level calculation since the error in a transition formed between two energy levels 

should not be larger than the resolution of the spectrometer. 

The overfitting witnessed in these two particular A2 plots may result from a fit to data 

that cannot be approximated or a bad expansion coefficient for each of these energy levels 

in Polo's publication.13 Since all other A2 fits did not show any overfitting and the only 

significant difference in the approximate energy levels is in the expansion coefficients 

which are used to predict the implications of asymmetry, the error might be in one of 

these quoted expansion coefficients. 

5.2 Global Fitting Routine 

The goal of any spectroscopic research is to report the rotational and possibly the 

centrifugal distortion constants that explain the rotation of a molecule from the correctly 

assigned spectrum. This research is not any different. To obtain these physical constants, 

a computer code was written to find the parameters that would replicate the data obtained 

from the spectral assignments up to J = 40. 

5.2.1 Approach 

A computer program written to accomplish this task requires a procedure to calculate 

the energy levels as a function of the parameters that represent the rotational constants 

and a procedure to find the best set of these parameters which can then be reported as the 

rotational constants. The choice of the procedure used to calculate the energy levels is 
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driven by the molecule, while the procedure to find the best set of parameters must be 

written to find the minimum of a surface that is described by the set of parameters. 

Finding the set of parameters that result in a minimum value for the height of a 

surface is far from a trivial problem. The number of dimensions of the surface is defined 

by the number of rotational constants required to describe the rotation of the molecule 

plus one dimension for the height of the surface. For ONBr the centrifugal distortion 

constants are required which increases the number of required parameters to nine. 

Therefore, when the height of the surface is included, the procedure must find a minimum 

on a ten dimensional surface. The relationship of these nine dimensions is unknown 

which implies a simultaneous change in two parameters may be required to approach the 

minimum of the surface. 

The difficulty described above has a calculus-based solution. At a given point P, 

there is a corresponding height to the surface. When all points of this surface height are 

connected, a contour is created with a shape that is dependent on the function which 

describes the surface. When the gradient of the function is taken at P, the vector obtained 

will be perpendicular to the contour and point in the direction of the steepest ascent. To 

find the local minimum of the surface near P, the components of the gradient vector are 

multiplied by X, a previously determined step size, and this scaled vector is subtracted 

from the coordinates describing point P thereby going in the direction of steepest descent. 

This process continues iteratively until the gradient no longer produces changes in the 

surface height within the bounds of the accuracy required. 
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5.2.2 Implementation 

The global fitting routine to determine the best spectroscopic constants was coded in 

Mathematica® by Wolfram Research. This language was chosen by virtue of the 

numerous built-in functions that utilize robust and proven algorithms to solve both 

numerical and analytical mathematics problems. Also, the ability to debug the code as it 

was written was agreeable. The final, documented code appears in Appendix C. 

The two procedures required by this computer program were chosen to aid in 

computational efficiency and memory usage. The procedure to calculated the energy 

levels was based on the approximation to the energy levels. Even though this theory was 

only valid over a subset of the observed transitions, the diagonalization procedure 

presents a problem with numerous numerical difficulties. To find the best set of 

parameters to replicate the data, the function FindMinimum was used. This function calls 

an algorithm which uses a gradient method to calculate the rate of steepest decent and 

requires input guesses to begin the search for the nearest local minimum.18 The actual 

minimization was done on the value of the sum square error at point P where the sum 

square error is defined by: 

N 

SSE = ^(TOi-TCi) (5.1) 
i=\ 

where SSE is the sum square error, TO. and TC. are the ith observed and calculated 

transitions, respectively, and N is the number of observed transitions. By minimizing the 

SSE, the rotational parameters used to generate the calculated transitions were forced to 

the values that best replicated the observed transitions. Once the gradient found caused 
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less than a 1 x 10   change in the SSE, the routine ended and the SSE and rotational 

constants defining the minimum were output. From the output SSE, the quality of the fit 

could be determined by finding the standard deviation of the data by: 

where a is the standard deviation and SSE and TV are defined as in (5.1). 

The minimization of the sum square error for the rotational transitions of ONBr with 

the constraint that the parameters were physically realistic proved to be a very trying task. 

To eliminate some of the difficulty, the distortion parameters R5 and R6 were constrained 

such that these values would equal the published 5k value by solving the appropriate 

transformation in (2.26) for R6 in terms of R5 and 8k. Even with this constraint to reduce 

the parameters, the initial method employed to find the physical local minimum was 

dependent on results from previous minimizations. This method involved finding the 

minimum of a hypersurface, a slice of the surface obtained by holding parameters fixed. 

Upon the completion of each minimization, the previously obtained values were input as 

the initial guesses and the dimension of the hypersurface was expanded by one by 

allowing another parameter to vary. This procedure worked well for a hypersurface with 

less than seven dimensions, however, the ability to find the local minimum on the seven 

dimensional hypersurface became extremely guess dependent. With this characteristic, 

the addition of dimensions seemed to create a stiff problem. To compensate for this 

apparent stiffness, two initial guesses were used for each parameter where the second 

initial guess was calculated by adding no more than a tenth of a percent to the first guess. 
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The value of the second guess did not influence the location of the minimum found, only 

the ability of the code to eliminate the stiffness. With the addition of these guesses, all 

nine parameters could be minimized by using physically realistic values for the initial 

guesses. 

To verify the code, a subset of the Vj = 0 -» Vj = 1 data was used as the observed data list. 

This subset contained transitions between energy levels that could be calculated by the 

approximate equations. The results of this validation appear in Table 5-1. 

79 
Table 5-1. Molecular constants for ON Br for the Vj fundamental band as published and 

-l 
determined by this research. All rotational parameters, band origins, and a's in cm . 
Standard errors in units of the last quoted digit are given in parentheses for the constants. 

v1 = l 

Vj = 0a) Diagonalizationa) Approximation 

V 
0 

N/A 1798.751285(53) 1798.753081 

A 2.85229541 2.826284(3) 2.825820 

<B 0.125002273 0.12552047(15) 0.12550206 

C 0.119628555 0.12006208(13) 0.12007743 

Aj(10"8) 9.514889 9.62636(123) 9.51681 

AJK(10"
6
) -1.89878 -1.8999(9) -1.9467 

AK(10"
4
) 1.60979 1.5769(4) 1.4638 

8J (109) 5.26711 5.3859(157) 2.9732 

5K (107) 6.6250b) 

e(10"4) 4.9210232 5.0471816 5.0196430 

transitions N/A 890 447 

a N/A 0.00063 0.00341 

a) 4 
Observations and values obtained by Esposti et al. 

b) 
Common value for the ground and v = 1 states. 
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The minimized parameters obtained are similar to those published by Esposti et al 

with the exception of the band origin and the some of the distortion constants.4 Since the 

code used to obtain this set of spectroscopic constants was different and the computation 

was not done on the complete Vj = 0 -> Vj = 1 data set, the minimized values were not 

expected to be identical to the published constants, however, the standard deviation, 

although within the resolution, 0.0045 cm , is considerably higher than the published 

deviation. The residuals of the fit were investigated to see if any information could be 

gained about the maximum J value that could be approximated. If the approximation had 

broken down, the residuals would exhibit a trend when the asymmetry approximation was 

no longer valid; no trend was apparent. 

5.3 Determination of the Valid Range ofj and the Rotational Constants 

When the global fitting routine was implemented to determine the rotational 

parameters describing the spectral assignment of the Vj = 0 —> Vj = 2 transition, the 

existence of many local minima on the ten dimensional surface prompted the need for 

physically realistic values as initial guesses. Since the values of the A2 plots did not 

follow the trend between the Vj = 0 and Vj = 1 rotational parameters, a method to generate 

a new set of initial guess was sought The harmonic approximation was invoked to 

determine these physically realistic guesses. 

In the harmonic approximation, all the vibrational levels are separated by the same 

distance. This implies that all the rotational parameters for a particular vibrational level 

will have values that follow a linear trend as the vibrational level is changed. Even 
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though this approximation cannot explain anharmonicity or dissociation, these 

phenomena do not need to be considered for the low vibrational levels studied by this 

research. 

Due to the spacing in the vibrational levels, any rotational parameter that is 

vibrationally dependent, the A, B, and C (representation free) parameters, for example, 

will exhibit a trend. In the harmonic approximation, the difference between the values of 

a parameter for the second vibrational level and the first vibrational level will be identical 

to the difference of the first level and ground level values for the same parameter. 

With the harmonically approximated values as the initial guesses, the code was 

implemented on the set of observed transitions with J < 40. The values obtained for the 

rotational constants appears in Table 5-2. 

Table 5-2. Rotational parameters obtained from fit to observed transitions for J < 40. 

Rotational parameters, band origin, and a are given in cm   and e is unitless. 

Constant Vo !A £ C Aj (10"8) AJK (10"7) 

v, = 2 3563.0189 2.80039 0.126434 0.120671 9.644356 6.590861 

Constant AK(10"4) 5j (10"8) 8K (10"7) e(10"4) transitions a 

vi = 2 3.144468 -2.69033 6.62496 5.38228 434 0.0901 

The standard deviation of this fit is close to, but not less than, the resolution of the 

spectrometer. To determine the primary cause of this high standard deviation, the 

residuals of the transitions in each of the branches were investigated. All of these 

residuals exhibited the same type of trend for high J as shown in Figure 5-9. 
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Figure 5-9. Residuals of the P branch transitions. Dotted lines 
represent the resolution bounds and each symbol represents a 
different combination of K and K . a c 

With the magnitude of the residuals at high J being so large, the immediate cause of 

this problem seemed to be linked to the truncation of the power series in m in the 

approximation. This situation seems likely since the series converges very slowly with 

the values of the truncated terms on the order of the resolution. 

Another possible cause of the large residuals could be a misassignment of the 

spectrum. This cause is conceivable since the values obtained for the rotational 

parameters are not close to the numbers obtained from the A2 curves. In particular, the 

values of the A (representation free) parameter differed by 0.005 cm . Since the A 

parameter is a coefficient in the asymmetry expansion which contains a J dependence of 

twelfth order in the series, a change in the value of the A parameter will drastically 

change the location of the transitions that fit the trend. With this change of the trend, the 

assignments that fit the previous A2 trends would be incorrect for high J. 
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To determine the actual cause of the trend for high J, the constants reported in Table 

5-2 were used to calculate the energy levels with the diagonalization code in Appendix C. 

This code was benchmarked against the calculated transitions published by Esposti et al 

-4        -1 4 ,. , 
and found to be accurate to within 5x10   cm .   Transitions corresponding to the 

observed transitions were calculated from these energy levels and the residuals were 

obtained. In Figure 5-10 the residuals for the JQJ transitions in the P branch, P(JQ}), with 

J < 40 are plotted. 
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" ■ Resolution Bound 
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Figure 5-10. Residuals of J0 transitions for the asymmetry 

expansion and diagonalization procedures. Rotational parameters 
used for both methods are found in Table 5-3. 

There is a clear deviation in the residuals of the two methods which must result from 

the breakdown of the asymmetry approximation since any misassignments would effect 

both sets of residuals. To find the J value at which this deviation becomes larger than the 

experimental resolution, the difference of the transitions calculated in the global fit and 
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the transition calculated by the numerical diagonalization was taken. This difference 

appears in Figure 5-11. 
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Figure 5-11. Difference in the transitions calculated with the 
diagonalization method and the transitions obtained from the global 
fit based on the asymmetry approximation method. The smooth trend 
in this plot clearly shows the dynamic breakdown of the 
approximation for J > 25. 

From Figure 5-11, the highest J value that is accurately represented within the 

experimental resolution is J = 24. A similar analysis was done for the other sets of 

transitions of the same K value for all three branches, and all of these residual 
a 

differences showed roughly the same maximum J value. 

With the valid range of J known, the asymmetry expansion was used to determine an 

accurate set of rotational constants for transitions in this range. The previously published 

constants for the v = 0 and Vj = 1 levels appear in Table 5-3 with the values obtained 

from the fit to the set of transitions with J < 24. (For the complete list of transitions, 

observed and calculated locations, and the residuals of the fit see Appendix D.) 
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79 -1 
Table 5-3. Molecular constants for ON  Br. All values are in cm   except the 
number of transitions. Numbers in parentheses represent the error in the last digit. 

1           vi=°a) Vj = la) v1 = 2 

V 
0 

N/A 1798.751285(53) 3563.03442(92) 

A 2.85229541 2.826284(3) 2.793526(55) 

<B 0.125002273 0.12552047(15) 0.1264969(56) 

C 0.119628555 0.12006208(13) 0.1207390(22) 

Aj (10"8) 9.514889 9.62636(123) 16.49(38) 

AJK (10"6) -1.89878 -1.8999(9) -2.23(17) 

AK(10"4) 1.60979 1.5769(4) 1.577(25) 

5J (10"9) 5.26711 5.3859(157) 12.2(29) 

5K(10"7) 6.6250b) 

e(10"4) 4.9210232 5.0471816 5.3922(38) 

transitions N/A 890 294 

G N/A 0.00063 0.01683 

a) 4 
Observations and values obtained by Esposti et al. 

b) 
Common value for the ground, v} = 1, and Vj = 2 states. 

The errors quoted in the constants for the Vj = 2 level were obtained through the use 

of a Monte Carlo technique that used random numbers whose distribution was described 

-l 
by a Gaussian centered at zero with a standard deviation of 0.0075 cm . These numbers 

were added to every point in the observed data set to simulate another collection of 

rotational transitions, and the best set of constants for the "new" data set were obtained. 

The distribution of the numerous values for the constants were then used to determine the 

standard deviation in the value of each constant. 
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This standard deviation, while lower than the experimental resolution, can be 

improved by viewing the residuals of the fit. An investigation of these values will show 

which transitions were misassigned, and the fit can be reaccomplished to refine the values 

of the constants. 

The v , A, % and C constants in Table 5-3 are well determined for this small set of 

transitions may contain some error due to misassignment, but these values can be used to 

further study the v2 = 0 -> Vj = 2 transition in ONBr. The distortion constants, however, 

are not well known since the errors in these constants are quite large. 

The size of the errors in the centrifugal distortion constants can be used to 

understand the physics of the rotating ONBr molecule. The high errors in these constants 

imply that the molecule is just beginning to distort; the distortion parameters can still be 

changed dramatically to obtain a low sum square error. Also, earlier in this chapter the 

centrifugal distortion terms were omitted from the A2 equations since the inclusion of 

these terms did not significantly change A, B, and C (representation free) parameters. 

These high standard deviations support the assumption to neglect these terms in the A2 

equations used to assign the spectrum. 

The constants obtained from the fit are considerably removed from the trend between 

the Vj = 0 and Vj = 1 constants. This is not surprising since many local minima were 

found on the ten dimensional surface. The Vj = 2 constants may differ from the 

previously published vibrational trend since the transitions used to obtain these values 

was limited to J < 25. However, the nine constants where determined from 294 

68 



transitions with a standard deviation within the experimental resolution. Therefore, the   - 

constants for the v} = 1 and Vj = 2 levels should be determined simultaneously using both 

sets of data with the constraint that the difference in the trend for each constant be no 

greater than the trend between the band origins of each vibrational transition. 

The numbers reported in Table 5-3 show some of the physics of the rotation of the 

molecule. The asymmetry parameter, for example, has increased for each level. This 

implies that the molecule has becomes more asymmetric as the vibrational energy is 

increased. Undoubtedly, this trend will continue until the molecule dissociates. 
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6. Conclusion 

6.1 Summary 

Nitrosyl bromide (ONBr) is a nearly-prolate asymmetric molecule with an asymmetry 

parameter, K, of -0.996. This molecule can be created by combining gaseous Br2 and NO in a 

sample chamber which is allowed to equilibrate under room lights. Equilibrium is reached 

rapidly under the aforementioned circumstances with only residual amounts of Br2 and NO 

remaining in the cell. 

The asymmetric nature of ONBr results in the lack of a quantum mechanical basis in 

which the rotational Hamiltonian of the molecule is diagonalized. This requires a numerical 

diagonalization of four tridiagonal matricies to calculate the energy levels of the molecule. 

Analytical expressions for the energy levels are desirable and can be obtained by using a 

perturbational technique. These analytical expressions have been used throughout this 

research. 

The validity of the approximation for the energy levels, whose functional form is that of 

a power series expansion in the asymmetry parameter, e, has been checked by numerous 

methods including a comparison with the numerical diagonalization method. The present 

research has found that the approximation is valid for J < 24 with the exception of the energy 

levels corresponding to Jj    . By checking the location of these levels as calculated with the 

approximation against the corresponding levels as calculated with the numerical 

diagonalization, it appears that an error exists in the numerical expansion coefficients quoted 

for this J-dependent energy level expression. 
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The maximum value of J reported above was determined by comparing the transitions 

obtained from the global fit and the transitions calculated with the diagonalization procedure. 

By taking the difference of these two sets of transitions, the issue of a misassigned spectrum 

became a mute point. The plot of this difference shows a dynamic breakdown of the 

asymmetry expansion. 

The inability of the approximation to represent energy levels for J > 25 occurs because 

the series expansion in m must be truncated at the sixth J(J + 1) term due to the lack of 

reported expansion coefficients for higher order terms. Although inappropriate for J > 25 for 

this study, all J values below this level, with the exception of the case described above, have 

valid analytical expressions which can be used to assign the spectrum up to the J = 24 level. 

The spectral assignment for the Vj = 0 —> Vj = 2 transition in ONBr proved to be a 

formidable task due to the density of the spectrum. With the resolution obtainable by the 

FTS employed, 0.02 cm , the dense spectrum exhibited considerable blending. To make the 

correct spectral assignments, certain trends between transitions, called second differences, 

were used. These trends, while applicable for only a small subset of the data, could be used 

to verify a spectral assignment by fitting the corresponding analytical second difference 

equation to the data. The spectral assignment was considered correct for a given trend when 

the parameters of the fit were physically realistic and the residuals of all the data points were 

within the resolution of the spectrometer. 

The set of parameters obtained from these second difference fits were not complete 

because the values represented local fits to the data set. To obtain a global fit to the data, a 

computer code was written to find the minimum on a surface created with a dimension for the 
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sum square error and the each rotational constant. Numerous difficulties arose when this 

code was implemented. The most difficult of these was the existence of numerous local 

minima in the region of a local minimum that described a valid set of rotational constants. 

To guarantee the minimum found would be realistic, initial guesses were made from a 

harmonic approximation to the rotational constants. 

When the dimension of the hypersurface was increased above six, the problem became 

stiff. This was overcome by calculating a second guess from the first initial guess. These 

guesses where calculated by adding no more than a tenth of a percent to the initial guess. ^ 

With these two initial guesses being used, the minimum could be found with the 

harmonically approximated guesses. 

The errors in the reported constants were obtained by introducing random Gaussian 

noise into the observed data set and then finding the best set of constants for this "new" data. 

This process was done repetitively until a set of values for each parameter was obtained. The 

statistics of this set of values were studied with the standard deviations of the set of constants 

reported as the error in each. 

Since the errors in the v , Ä, % and C parameters are small, these numbers have been 

determined for the Vj = 0 -» vx = 2 transition in ONBr and can be used in subsequent 

investigations of this transition. However, the errors in the centrifugal distortion parameters 

are too large to merit the use of these values. 

All the rotational parameters obtained can be used to explain the physics of the 

molecule. The asymmetry parameter for each vibrational level in Table 5-3 shows an 

increasing trend. This implies that the molecule becomes more asymmetric as more energy is 
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added. Also, the large standard deviations in the centrifugal distortion constants reported in 

Table 5-3 lead one to believe that the molecule is not considerably distorted as it rotates for 

J<24. 

6.2 Recommendations for Future Work 

Numerous stones that have been turned by this research have not been investigated. 

These topics require investigation before the exact role of ONBr in the depletion of the ozone 

layer or the Br*/NO energy transfer laser can be understood. 

The actual mechanism used to create ONBr is not sufficiently understood. The only rate 

coefficient published is for the direct creation of ONBr from Br2 and NO. The reactions used 

to form ONBr in this experiment involved the photolysis of the Br2 by room lights and a 

subsequent reaction of the Br with NO and a third body. These reaction rates were not 

located by the literature search which accompanied this research. 

When the initial spectrum of ONBr was obtained, the amount of absorption was 

surprising. The cross section for absorption of both the Vj = 0 —> Vj = 1 and Vj = 0 —> Vj = 2 

transitions have not been reported, so any preliminary calculation of the pressure of ONBr 

required to obtain an adequate spectrum could not be completed. It was the intent of this 

research to determine the absorption cross sections for these and other overtones of the Vj 

stretch frequency, however, theoretical and mathematical difficulties did not allow time for 

this study. 

Since blending is so prevalent in the spectrum, another spectrum of this region taken 

with a higher resolution should be completed. This would increase the number of spectral 
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features to assign, however, the features recorded would result from one or possibly two 

transitions. The limited blending could then lead to an analysis of the intensities of the 

transitions and a much improved assignment of the spectrum with considerably improved 

constants. The initial assignment of this spectrum could be done with the second difference 

equations used by this research for a J value appropriate for the resolution used to record the 

spectrum. 

Although the approximation is valid for transitions of J < 24, only a small number of the 

spectral features observed fall into this category. To assign and globally fit all the spectral 

features, the numerical diagonalization must be used to calculate the energy levels. This 

requires the writing of a code to perform the necessary diagonalization as a function of the 

parameters of a minimization procedure. With the completion of this code and a complete 

assignment of the spectrum, the rotational constants can be improved. If these improved 

values still do not replicate the slight anharmonic trend expected in the constants, a global fit 

to the vt = 0 -> Vj = 1 and Vj = 0 -» v{ = 2 transitions must be completed to generate the 

appropriate constants for both levels. 
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where Ek, k denotes the value of (J,k'|H^.0lr |J,k). Since the ordering of the k and k' is 

degenerate in the calculation of the energy, and E , and E.    , exhibit their k dependence 

in even powers of k, E     = E     = E     = E     . With this reduction we need only look 

at the lower half of the Hamiltonian: 

(E 

H = 

0,0 0 E0,2 0      •• 0 0 0 0 

0 Eu 0 Ei.3    - 0 0 0 0 

0,2 0 E2,2 0      •• 0 0 0 0 

0 0 0 0      •• Ej -3,J- -3 0 Ej -3J-1 0 

0 0 0 0      •• 0 Ej. -2J-2 0 Ej- 

0 0 0 0      •• Ej -3,J- -1 0 Ej -1,J-1 0 

0 0 0 0      •• 0 E T-2..T 0 ET 

(A.2) 

J,J ) 

By invoking the symmetry of the rotational surface for an asymmetric top, Wang 

developed the following transformation to convert H to a block diagonal form:10'12 

J,O+) = |J,0) 

J,k+) = -^flj,k) + |J,-k» 

j,k-)=-jLflj,k>-|j,-k>) 

The generalized transformation matrix is, for J even: 

T   = 

J,J j.cr 

J,J-1 w 
J,J 

J,J-1 

12+) 

J,2H 

J,0 

J.-J +1 

J,0+\ /j,0 J,2+\ 

,0+\   /j,-J + lJ,2+\ 

J-J J,2+\ 

J,J 

J,J-1 

J,J~\ /j,J J,l+\ 

,J~)     (j,J- 

J,0 J,J" J,0 JX 

j-j+i 

j-j 

J,J 

J,J~ 

J-J+I 

J-J J,I 

(2.18) 

J,J J,(J-D" 

J,J-l J,(J-l)" 

J,0 J,(J-1)" 

J-J +1 J,(J-D" 

J-J J,(J-D" 

(A.4) 
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where the K'e matrix is block diagonal which implies: the term immediately to the left 

and below the first entry has a value other than zero, terms appear diagonally from these 

three values to the bottom right corner of the matrix, and the rest of the matrix entries are 

zero. A similar block diagonal matrix can be obtained for the odd J case such that 

H'0 = T^HT0. The block diagonal matricies can then be reduced to the four 

submatricies shown below for J even. 

E+ = 

E~ = 

E0,0 

V2E0;2 

0 

0 

E2,4 

0 

V2E 

2,2     E2,4 

=•4,4 

0,2 

h,4 

o 

0 
E4,6 

0 
52,4 

-4,4 

0 

0 

0 

0 

ET- J-2,J  
E

J,J; 

=-4,6    ^6,6 

0 

rEU+E. 
El,3 

0 E
J-2,J  

E
J,J; 

o+ = 

1,1    El,3 0 

o = 

0 

fEu-E_u 

El.3 
0 

0 

E3,3    E3,5 
E3,5     E5,5 

^1,3       u 

E33    E3,5 
E3,5    E5,5 

0 

0 

0 

E
J-3,J-I   

E
J-I,J-I; 

0 

0 

EJ-3,J-1    EJ-1,J-1 

(A.7) 

By finding the eigenvalues of each of these submatricies, one has obtained the 

energies of a particular rotational level. These levels can be labeled by the quantum 
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numbers J, K , and K where K + K = J or J+l.10 This collection of quantum numbers '     a c a c 

can be written as JR ,K and for this representation, I, the energy levels in order of 

.10 increasing energy are: 

E   :  J0,J' J2,J-2> J4J-4> J6J-6' ••• 

E_:  J2,J-1> J4,J-3> J6,J-5> J8J-7> ••• 
(A.ö; 

°   :  J1,J-1> J3,J-3' J5,J-5' J7,J-7' ••• 

°~:  h,h J3,J-2' J5,J-4' J7J-6> ■•• 
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Appendix B : Second Difference Plots and Residuals 

Below are the A2 plots and corresponding residuals generated for the spectral 

assignment. The plots used in the body of the paper will not be reproduced here, but note 

how all A fits but one work up to J = 40. 
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Figure B-l. Second difference for the trend from JQ to Jj y Blending is the 

cause of the scattering of the locations in the region from J = 6toJ= 13. 

A20,1P (Kc = J) 

Figure B-2. Residuals of fit above. Even though the transition differences in 
the J = 6 to J = 13 range looked bad, the residuals are still within the 
resolution. 
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Figure B-3. Second difference for the trend from JQJ to J2jr Once again, 

the effects of blending can be seen in the assignments. 
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Figure B-5. Second difference for the trend from JQ} to J2} r 
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Figure B-9. Break down of the asymmetry approximation occurs for this 
trend above J = 22. The transitions that were fit in Figure B-7 in the region 
between J = 20 and J = 25 are not fit well. 
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Figure B-ll. Residuals for the trend fit above. 
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Figure B-12. Difference in assignments for the JQ} and J4 J4 levels. 
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above. 
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Figure B-14. Trend from JQ} to J5 ]5. 
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Figure B-15. Residuals from above fit. 
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Figure B-16. Fit for the J0} to J6 i6 trend. 
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Figure B-17. Residuals for the above fit. 
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Appendix C : Mathematica® Codes 

Below is the Mathematica® code written to generate the energy levels for any 

r 
vibrational level of an asymmetric top in the I representation. 

(*Diagonalization Procedure*) 

(*Rules to calculate energy levels*) 
ekk[j_, kp_, k_, lev_] := 0.5*((B[lev]+Cv[lev]) j (j+1)) + 

(A[lev]-0.5*(B[lev]+Cv[lev])) kA2 - Dj[lev] jA2 (j+l)A2 - 
Djk[lev] j (j+1) kA2 - Dk[lev] kA4 + Fj jA3 (j+1)"3 + 
Fjk jA2 (j+l)A2 kA2 + Fkj j (j+1) kA4 + Fk kA6; 

ekm2k[j_, kp_, k_, lev_] := (0.25*(B[lev]-Cvflev]) - dj[lev] j (j+1) - 
0.5*dk*(kpA2+kA2) + fj jA2 (j+l)A2 + 0.5*fjk j (j+1) (kpA2+kA2) + 
0.5*fk*(kpA4+kA4)) Sqrt[(j (j+1) -k (k-l))*(j (j+1) - (k-1) (k-2))];*) 

(*Rules required*) 
uprElim[n_] := If[EvenQ[n],n,n-1]; 
upr01im[n_] := If[EvenQ[n],n-1,n]; 
ka[n_] := If[EvenQ[n],n/2,(n-1)/2]; 
kc[n_] := If[EvenQ[n],j-ka[n]+l,j-ka[n]]; 
kmax[n_] := If[EvenQ[n],n/2,(n-1)/2]; 
omax[n_] := If[EvenQ[n],kmax[n],kmax[n]+1]; 

(*J=1 Energy Level Calculation*) 
enercalc[lev] = Array[ener[lev],{70,70,70}]; 

3=1; 
lev=0; 

jlmatrix[lev] = {{ekk[j,1,1,lev], 0, ekm2k[j,-1,1,lev]}, 
{0, ekk[j,0,0,lev], 0}, 
{ekm2k[j,-l,l,lev], 0, ekk[j,1,1,lev]}}; 

,kc[i]] = jlsort[lev][[i]]] 

Do[{eposdi[lev] = Table[ekk[j,k,k,lev],{k,0,uprElim[j],2}], 
eposoff[lev] = Table[If[k-2>0,N[ekm2k[j,k-2,k,lev]], 

N[Sqrt[2] ekm2k[j,k-2,k,lev]]],{k,2,uprElim[j],2}], 
epos[lev] = Table[Switch[r-s,-l,eposoff[lev][[r]],0,eposdi[lev][[r]], 

l,eposoff[lev][[s]],_,0],{r,kmax[j]+1},{s,kmax[j]+1}], 
enegdi[lev] = Table[ekk[j,k,k,lev],{k,2,uprElim[j],2}], 
enegoff[lev] = Table[If[k-2>0,N[ekm2k[j,k-2,k,lev]], 

N[Sqrt[2] ekm2k[j,k-2,k,lev]]],{k,4,uprElim[j],2}], 
enegtlev] = Table[Switch[r-s,-1,enegoff[lev][[r]],0,enegdi[lev][[r]], 

l,enegoff[lev][[s]],_,0],{r,kmax[j]},{s,kmax[j]}], 
oposdiflev] = Table[If[k>l,ekk[j,k,k,lev],(ekk[j,k,k,lev]+ 

ekm2k[j,k-2,k,lev])],{k,l,upr01im[j],2}], 
oposoff[lev] = Table[N[ekm2k[j,k-2,k,lev]],{k,3,upr01im[j],2}], 
opos[lev] = Table[Switch[r-s,-1,oposoff[lev][[r]],0,oposdi[lev][[r]], 

l,oposoff[lev][[s]],_,0],{r,omax[j]},{s,omax[j]}], 
onegdi[lev] = Table[If[k>l,ekk[j,k,k,lev],(ekk[j,k,k,lev]- 

ekm2k[j,k-2,k,lev])],{k,l,upr01im[j],2}], 
onegoff[lev] = Table[N[ekm2k[j,k-2,k,lev]],{k,3,upr01im[j],2}], 
oneg[lev] = Table[Switch[r-s,-1,onegoff[lev][[r]],0,onegdi[lev][[r]], 

l,onegoff[lev][[s]],_,0],{r,omax[j]},{s,omax[j]}], 
jevals[lev] = Table!{Eigenvalues[epos[lev]],Eigenvalues[eneg[lev]], 

Eigenvalues[opos[lev]],Eigenvalues[oneg[lev]]}], 
enerlevs[lev] = Sort[Flatten[jevals[lev]]], 

}, {j,2,70}]; 
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The Mathematica® code below was used to determine the best rotational constants 

for the assigned spectrum. To compare the energy levels, the lines of code prior to the 

line which calculates the transitions between the energy levels was used with the 

appropriate v} = 1 constant values for the parameters entered. The minimization 

parameters represent the following constants: 

pi => v , p2 => A, p3 => B, p4 => C, p5 => Aj; p6 => A^, p7 => AK, p8 

=> 8;, and p9 => R5. 

*Mathematica commands to minimize rotational parameters for an asymmetric*) 
*triatomic molecule from transitions contained in a data file.  This code*) 
*uses an approximation for the energy levels that was published by Polo*) 
*in Can. J. of Phys. 35, (1957):  880-885.  For nitrosyl bromide - the*) 
*molecule for which this code was written - this approximation breaksdown*) 
*above J = 25 for most cases.  It has been determined that the energy level*) 
♦equations do not properly predict the Ka = 1, Kc = J-l for J > 18 and the*) 
*Ka =3, Kc = J-2 for J > 22.  Two guesses are required for the parameters,*) 
*however, the second set of guesses are determined from the first set of*) 
*guesses read in from an external file called "Guesses."*) 

(*A11 values are in cm-1.*) 

MHztoWave = 10~6 * 3.336*10A(-11);      (*Conversion from MHz to cm-1*) 

(*Lower Level Coefficients*) 
A[0] = 85500.4620*MHztoWave; 
B[0] = 3747.07053*MHztoWave; 
Cv[0] = 3585.98785*MHztoWave; 
Dj[0] = 2.852185*10A(-3)*MHztoWave; 
Djk[0] = -5.69179*10~(-2)*MHztoWave; 
Dk[0] = 4.8255*MHztoWave; 
dj[0] = 1.57887*10A(-4)*MHztoWave; 

(*Asymmetry parameter.*) 
eps[p2_, p3_, p4_] := (p3 - p4)/(2 (2 p2 - p3 - p4)); 

(*Constraint on r6 value.*) 
r6[p2_,p3_,p4_,p9_] = (-3.31248*10A(-7) -p9) eps[p2,p3,p4]; 

(*Standard deviation rule.*) 
standev[sumsqerr_,numtrans_] := Sqrt[sumsqerr/(numtrans - 2)]; 

(*Rules containing the appropriate expansion coefficient for the different*) 
(*energy levels.*) 
ck[j_,ka_,kc_] := Which[ka == 0, 0, ka == 1 && kc == j, -3/2, 

ka == 1 && kc == j-l, 3/2, ka == 2 && kc == j-l, -3/2, 
ka == 2 && kc == j-2, -3/2, ka == 3 && kc == j-2, -3/2, 
ka == 3 && kc == j-3, 3/2, ka == 4 && kc == j-3, -3/2, 
ka == 4 && kc == j-4, -3/2, ka == 5 && kc == j-4, -3/2, 
ka == 5 && kc == j-5, 3/2, ka > 5, -3/2]; 

cjl[j_,ka_,kc_] := lf[ka == 1, lf[kc == j, -1, 1],0]; 

cj2[j_,ka_,kc_] := Which[ka == 0, -1/2, ka == 1 && kc == j, -1/8, 
ka == 1 && kc == j-l, 1/8, ka == 2 && kc == j-l, -1/12, 
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ka == 2 && kc == j-2, 5/12, ka == 3 && kc == j-2, 1/16, 
ka == 3 && kc == j-3, -1/16, ka == 4, 1/30, 
ka == 5 ScSc  kc == j-4, 1/48, ka == 5 && kc == j-5, -1/48, 
ka > 5, 1/(2 (kaA2 - 1) ) ] ; 

cj3[j_,ka_,kc_] := Which[ka == 0, 0, ka == 1 && kc == j, 1/64, 
ka == 1 ScSc  kc == j-1, -1/64, ka == 2, 0, 
ka == 3 && kc == j-2, -1/64, ka == 3 ScSc  kc == j-3, 1/64, 
ka == 4, 0, ka == 5, 0, ka > 5, 0] ; 

cj4[j_,ka_,kc_] := Which[ka == 0, 7/128, ka == 1 && kc == j, -1/1536, 
ka == 1 ScSc  kc == j-1, 1/1536, ka == 2 && kc == j-1, 5/13824, 
ka == 2 ScSc  kc == j-2, -763/13824, ka == 3 ScSc  kc == j-2, 13/20480, 
ka == 3 && kc == j-3, -13/20480, ka == 4 && kc == j-3, -317/864000, 
ka == 4 && kc == j-4, 433/864000, ka == 5 && kc == j-4, 11/774144, 
ka == 5 ScSc  kc == j-5, -11/774144, 
ka > 5, ((5 kaA2 + 7)/(32 (kaA2-l)A3 (kaA2-4)))]; 

cj5[j_,ka_,kc_] := Which[ka == 0, 0, ka == 1 && kc == j, -11/36864, 
ka == 1 && kc == j-1, 11/36864, ka == 2, 0, 
ka == 3 ScSc  kc == j-2, 5/16384, ka == 3 && kc == j-3, -5/16384, 
ka == 4, 0, ka == 5 && kc == j-4, -1/147456, 
ka == 5 && kc == j-5, 1/147456, ka > 5, 0]; 

cj6[j_,ka_,kc_] := Which[ka == 0, -29/2304, ka == 1, 0, 
ka == 2 && kc == j-1, -289/79626240, 
ka == 2 && kc == j-2, 1002401/79626240, ka > 2, 0] ; 

(*Rigid rotor energy level calculation rule which uses the coefficients in the*) 
(*rules above.*) 
erig[j_,ka_,kc_,p2_,p3_,p4_] := 0.5 (p3+p4) j (j+1) + 

(p2 - 0.5 (p3+p4)) kaA2 + (p2 - 0.5 (p3+p4))* 
(kaA2 ck[j,ka,kc] (eps[p2,p3,p4])A2 + 
j (j+1) cjl[j,ka,kc] eps[p2,p3,p4] + 
jA2 (j+l)A2 cj2[j,ka,kc] (eps[p2,p3,p4])A2 + 
jA3 (j+l)A3 cj3[j,ka,kc] (eps[p2,p3,p4])A3 + 
jA4 (j+l)A4 cj4[j,ka,kc] (eps[p2,p3,p4])A4 + 
jA5 (j+l)A5 cj5[j,ka,kc] (eps[p2,p3,p4])A5 + 
jA6 (j+l)A6 cj6[j,ka,kc] (eps[p2,p3,p4])A6); 

(*Energy calculation to correct for the influence of first order centrifugal*) 
(♦distortion correction.  The actual energy is calculated using the*) 
(♦distortion equation required for the particular energy level.*) 
edist[j_,ka_,kc_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_] := Which[ 

?3,p4,p5,p8,p9], 
oneup[J,p2,p3,p4,p5,p6,p7,p8,p9], 

onelow[j,p2,p3,p4,p5,p6,p7,p8,p9], 
twoup[j,p2,p3,p4,p5,p6,p7,p8,p9], 
twolow[j,p2,p3,p4,p5,p6,p7,p8,p9], 
threeup[j,p2,p3,p4,p5,p6,p7,p8,p9], 
threelow[j,p2,p3,p4,p5,p6,p7,p8,p9], 

ka > 3, over3[j,ka,p2,p3,p4,p5,p6,p7,p8,p9]]; 

(♦Equations to describe the centrifugal distortion influence for different*) 
(♦cases of the k values of the energy level to be calculated.*) 
zero[j_,p2_,p3_,p4_,p5_,p8_,p9_] := (- 4 r6[p2,p3,p4,p9] + 

8 p9 eps[p2,p3,p4]) j (j+1) +(- p5 - 
(4 p9 + 2 p8) eps[p2,p3,p4]) jA2 (j+l)A2 + 
(p8 eps[p2,p3,p4]) jA3 (j+l)A3; 

oneup[j_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_]    :=   (-  p7   +   10   r6[p2,p3,p4,p9]   - 
30  p9  eps[p2,p3,p4])   +   (-  p6   -   4  r6[p2,p3,p4,p9]   -   2  p9   + 
(3   r6[p2,p3,p4,p9]   +  20  p9   +  3  p8)   eps[p2,p3,p4])   j    (j+1)   + 
(-  p5   +  p8   -   (2   r6[p2,p3,p4,p9]   +   (5/2)   p9   + 
2  p8)   eps[p2,p3,p4])   jA2   (j+l')A2   +   ((1/4)    (r6 [p2 ,p3 ,p4,p9]   + 
p8)   eps[p2,p3,p4])   jA3   (j+l)A3; 
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onelow[j_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_] := (- p7 + 10 r6[p2,p3,p4,p9] - 
30 p9 eps[p2,p3,p4]) + (- p6 - 4 r6[p2,p3,p4,p9] + 2 p9 + 
(- 3 r6[p2,p3,p4,p9] + 20 p9 + 3 p8) eps[p2,p3,p4]) j (j+1) + 
(- p5 - p8 - (-2 r6[p2,p3,p4,p9] + (5/2) p9 + 
2 p8) eps[p2,p3,p4]) jA2 (j+l)A2 + ((1/4) (- r6[p2,p3,p4,p9] + 
p8) eps[p2,p3,p4]) jA3 (j+l)A3; 

twoup[j_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_] := (- 16 p7 + 40 r6[p2,p3,p4,p9] - 
240 p9 eps[p2,p3,p4]) + (-4 p6 - 2 r6[p2,p3,p4,p9] + (60 p9 + 
12 p8) eps[p2,p3,p4]) j (j+1) + (- p5 - r6[p2,p3,p4,p9] - 
((10/3) p9 + 3 p8) eps[p2,p3,p4]) jA2 (j+l)A2 + 
((1/6) p8 eps[p2,p3,p4]) jA3 (j+l)A3; 

twolow[j_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_] := (- 16 p7 + 40 r6[p2,p3,p4,p9] - 
240 p9 eps[p2,p3,p4]) + (-4 p6 - 6 r6[p2,p3,p4,p9] + (52 p9 + 
12 p8) eps[p2,p3,p4]) j (j+1) + (- p5 + r6[p2,p3,p4,p9] + 
((2/3) p9 - p8) eps[p2,p3,p4]) jA2 (j+l)A2 + 
(-(5/6) p8 eps[p2,p3,p4]) jA3 (j+l)A3; 

threeup[j_,p2_,p3_/p4_,p5_,p6_,p7_,p8_,p9_] := (- 81 p7 + 90 r6[p2,p3,p4,p9] - 
990 p9 eps[p2,p3,p4]) + (-9 p6 - 4 r6[p2,p3,p4,p9] + 
(-3 r6[p2,p3,p4,p9J + 116 p9 + 27 p8) eps[p2,p3,p4]) j (j+1) + 
(- p5 + (4 r6[p2,p3,p4,p9] - (7/4) p9 - 
2 p8) eps[p2,p3,p4]) jA2 (j+l)A2 + ((-(1/4) r6[p2,p3,p4,p9] - 
(1/8) p8) eps[p2,p3,p4]) jA3 (j+l)A3; 

threelow[j_,p2_,p3_,p4_/p5_,p6_,p7_,p8_,p9_] := (- 81 p7 + 90 r6[p2,p3,p4,p9] 
990 p9 eps[p2,p3,p4]) + (-9 p6 - 4 r6[p2,p3,p4,p9] + 
(3 r6[p2,p3,p4,p9] + 116 p9 + 27 p8) eps[p2,p3,p4]) j (j+1) + 
(- p5 + (-4 r6[p2,p3,p4,p9] - (7/4) p9 - 
2 p8) eps[p2,p3,p4]) jA2 (j+l)A2 + (((1/4) r6[p2,p3,p4,p9] - 
(1/8) p8) eps[p2/P3,p4]) jA3 (j+l)A3; 

over3[J_,ka_,p2_,p3_,p4_/p5_,p6_,p7_,p8_/p9_] := (- kaA4 p7 + 
10 kaA2 r6[p2,p3,p4,p9] - 10 kaA2 (kaA2 + 2) p9 eps[p2,p3,p4]) + 
(- kaA2 p6 - 4 r6[p2,p3,p4,p9] + (4 (3 kaA2 + 2) p9 + 
3 kaA2 p8) eps[p2,p3,p4]) j (j+1) + (- p5 - (2 ((kaA2-2)/(kaA2-l)) p9 + 
2 p8) eps[p2,p3,p4]) jA2 (j+l)A2 + 
(- (l/(kaA2-l)) p8 eps[p2,p3,p4]) jA3 (j+l)A3; 

(*Energy level calculation including first order centrifugal distortion terms, 
energy[j_,ka_,kc_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_] := 

erig[j,ka,kc,p2,p3,p4] + 
edist[j,ka,kc,p2,p3,p4,p5 + 2 r6[p2,p3,p4,p9],p6 - 12 r6[p2,p3,p4,p9], 

p7 + 10 r6[p2,p3,p4,p9],p8,p9]; 

(♦Calculation of transitions between upper level - with minimization*) 
(♦parameters - and lower level - constants held fixed to microwave data.*) 
(*See Esposti, et. al. in Chem. Phys. Letters, 214, 6, (1993):  531 - 535.*) 
transcalc[ju_,kau_,kcu_,jl_,kal_,kcl_,pl_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_] := 

SetPrecision[pl + energy[ju,kau,kcu,p2,p3,p4,p5,p6,p7,p8,p9] - 
energy[jl,kal,kcl,A[0],B[0],Cv[0],Dj[0],Djk[0],Dk[0],dj[0],0],7] ; 

(*Module to call for the calculation of the transitions between the levels*) 
(*with the minimization parameters being passed as the upper level constants.* 
(*This module appends each calculated transition to a table, tCalc, which is*) 
(*created with a leading entry of 0.  Upon completion of the calculation of*) 
(*the theoretical transitions corresponding to observed transitions, the*) 
(*leading 0 is not present in tCalculated since the "Rest" command drops the*) 
(*first entry of the table.  This table, tCalculated, is returned to the*) 
(*program from the module.*) 
f[pl_,p2_,p3_,p4_,p5_,p6_,p7_,p8_,p9_] := Module[{tCalc = {0}}, 
Do[ 

AppendToftCalc, transcalc[tobs[[i,l]],tObs[[i,2]],tObs[[i,3]], 
tObs[[i,4]],tObs[[i,5]],tObs[[i,6]],pl,p2,p3,p4,p5,p6,p7,p8,p9]], 

{i,1,transmax}]; 
tCalculated = Rest[tCalc]; 
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Return[tCalculated] ; 
]; 

(*Function which returns the sum squared error, SSE, of the observed minus the*) 
(♦calculated transitions.*) 
sse[tEx_, tMeas_] := Apply[Plus,(tEx-tMeas)*2]; 

(♦Function to be minimized.  Note that the tenth dimension of the surface is*) 
(*the SSE and not the height.*) 
g[pl_, p2_, p3_, p4_, p5_, p6_, p7_, p8_, p9_, tEx_] := 

sse[tEx,f[pl,p2,p3,p4,p5,p6,p7,p8,p9]]; 

(*Command to read in and properly form observed data list.*) 
tObs = Partition[Flatten[ReadList["/home/reptilesl/twiest/test", Number, 

RecordLists->True, RecordSeparators->{","," "}]],7]; 
transmax = Dimensions[tObs][[1]]; 
tObserved = Last[Transpose[tObs]]; 

(*To do error analysis by a Monte Carlo technique, change the line above to:*) 
(*    tObserv = Last[Transpose[tObs]]; *) 
(*and add the following lines of code: *) 
(*    (*Commands to generate a set of random numbers whose*) *) 
(*    (*distribution can be described by a Gaussian centered*) *) 
(*    (*at zero with a standard deviation of 0.0075.*) *) 
(*    <<StatisticsxNormalDistributionv *) 
(*    gausDist = NormalDistributionfO, 0.0075]; *) 
(*    ranvals = Table[Random[gausDist],{i,1,transmax}]; *) 
(*    tObserved = tObserv + ranvals; *) 

(*Initial guesses.  Only one set is required in the data set as the second set*) 
(*is obtained from the first.  The numbers added to form the second set need*) 
(*not be in the direction of the minimum.*) 
guessvals = ReadList["/home/reptilesl/twiest/Guesses",Number]; 
plges = guessvals[[1]]; 
plges2 = plges + 0.03; 
p2ges = guessvals[[2]]; 
p2ges2 = p2ges + 0.01; 
p3ges = guessvals[[3]]; 
p3ges2 = p3ges + 0.001; 
p4ges = guessvals[[4]]; 
p4ges2 = p4ges + 0.001; 
p5ges = guessvals[[5]]; 
p5ges2 = p5ges + 1*10*(-9); 
p6ges = guessvals[[6]]; 
p6ges2 = p6ges + 1*10*(-7); 
p7ges = guessvals[[7]]; 
p7ges2 = p7ges + 1*10* (-5); 
p8ges = guessvals[[8]]; 
p8ges2 = p8ges + 1*10*(-10); 
p9ges = guessvals[[9]]; 
p9ges2 = p9ges + 1*10* (-7); 

(*Initial calculation to determine how bad the initial guesses are.  This*) 
^calculation uses only the guesses read in from the "Guesses" file.  The*) 
(*actual determination is done by calcualting the SSE and the standard*) 
(*deviation.*) 
f[plges,p2ges,p3ges,p4ges,p5ges,p6ges,p7ges,p8ges,p9ges]; 
rinit = sse[tObserved,tCalculated]; 
initsd = standevfrinit,transmax]; 

(♦Minimization function which uses the Steepest Descent method to find a local*) 
(♦minimum.*) 
h[tEx_] := SetPrecision[FindMinimum[g[pi,p2,p3,p4,p5,p6,p7,p8,p9,tEx], 

{pi,plges,plges2},{p2,p2ges,p2ges2},{p3,p3ges,p3ges2}, 
{p4,p4ges,p4ges2},{p5,p5ges,p5ges2},{p6,p6ges,p6ges2}, 
{p7,p7ges,p7ges2},{p8,p8ges,p8ges2},{p9,p9ges,p9ges2}, 
Maxlterations -> 30, WorkingPrecision->16, AccuracyGoal -> 4, 
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PrecisionGoal -> 4, Compiled->True],10]; 

(*Print statements output to file that show the initial guesses read into the*) 
(*memory, the initial SSE, and the initial standard deviation.*) 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 

"Command file name:  ZAMFtest"] 
"Transition file name:  test"] 
"Guess file name:  Guesses"] 
"Number of transitions = ",transmax] 
"pi guess = ",plges] 
"p2 guess = ",p2ges] 
"p3 guess = ",p3ges] 
"p4 guess = ",p4ges] 
"p5 guess = ",p5ges] 
"p6 guess = ",p6ges] 
"p7 guess = ",p7ges] 
"p8 guess = ",p8ges] 
"p9 guess = ",p9ges] 
"Initial r6 value = ",r6[p2ges,p3ges,p4ges,p9ges]] 
"Initial SSE = ",rinit] 
"Initial Standard Deviation = ",initsd] 

(*Minimization call with time stamping to determine the efficiency of the*) 
(*procedure.  The final minimized values are enetered into the table "params"*) 
(*and the centrifugal distortion constant, detltak, is calculated as a check*) 
(*to guarantee that the constraint on p9 and r6 has been met.*) 
Date [ ] 
r = h[tObserved]; 
Date[] 
params = Rest[r]; 
minpl 
minp2 
minp3 
minp4 
minp5 
minp6 
minp7 
minp8 
minp9 
delk = 

/. 
/. 
/. 
/. 
/. 
/. 
/. 
/. 
/. 

params[[1,1]] 
params[[1,2]] 
params[[1,3]] 
params[[1,4]] 
params[[1,5]] 
params[[1,6]] 
params[[1,7]] 
params[[1,8]] 
params[[1,9]] 

: pi 
: p2 
: P3 
: P4 
: P5 
: P6 
: P7 
: P8 
= p9 
(-2 minp9 - 2 (1/eps[minp2,minp3,minp4]) r6[minp2,minp3,minp4,minp9]); 

(*Commands to print the performance of the minimization procedure.*) 
Print [" " ] 
Print["| .  Minimization Performance    |"] 
Print [" " ] 
Print["Final Sum Square Error = ",r[[l]]] 
Print["with an accuracy of ",Accuracy[r[[1]]]," digits and a precision of ", 

Precision[r[[1]]]," digits."] 
Print["Final Standard Deviation = ",standev[r[[1]],transmax]] 
Print["with an accuracy of "»Accuracy[standev[r[[1]],transmax]]," digits and a 

precision of ",Precision[standev[r[[1]],transmax]]," digits."] 

(♦Commands to print out the minimized parameters, the accuracy and precision*) 
(*of those numbers, and to transform the minimized parameters to the*) 
(♦values that should be reported.*) 
Print [" " ] 
Print!"|   Minimized Parameters    |"] 
Print [" " ] 
Print["Parameter 1 = ",minpl, 

Precision[minpl]] 
Print["Parameter 2 = ",minp2, 

Precision[minp2]] 
Print["Parameter 3 = ",minp3, 

Precision[minp3]] 
Print["Parameter 4 = ",minp4, 

Precision[minp4]] 
Print["Parameter 5 = ",minp5, 

Precision[minp5]] 

Accuracy: 

Accuracy: 

Accuracy: 

Accuracy: 

Accuracy: 

,Accuracy[minpl] 

,Accuracy[minp2] 

,Accuracy[minp3] 

,Accuracy[minp4] 

,Accuracy[minp5] 

Precision: 

Precision: 

Precision: 

Precision: 

Precision: 
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Print 

Print 

Print 

Print 

Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 
Print 

"Parameter 6 = ",minp6,"; Accuracy 
Precision[minp6]] 
"Parameter 7 = ",minp7,"; Accuracy 
Precision[minp7]] 
"Parameter 8 = ",minp8,"; Accuracy 
Precision[minp8]] 
"Parameter 9 = ",minp9,"; Accuracy 
Precision[minp9]] 

Constant Values in the 
Final Form 

",Accuracy[minp6], 

".Accuracy[minp7], 

",Accuracy[minp8], 

",Accuracy[minp9], 

Precision: 

Precision: 

Precision: 

Precision: 

"Final asymmetry parameter = ",eps[minp2,minp3,minp4]] 
"A = ", (minp2 + 2 minp5)] 
"B = ", (minp3 + 2 minp5 + minp6 - 2 p8ges - 2 delk)] 
"C = ", (minp4 + 2 minp5 + minp6 + 2 p8ges + 2 delk)] 
"Deltaj value = ", minp5] 
"Deltajk value = ", minp6] 
"Deltak value = ", minp7] 
"deltaj value = ", minp8] 
"deltak value = ", delk] 

(*These commands will list the data by the six quantum numbers for the*) 
(♦transition, the observed transition location, the corresponding calculated*) 
(♦transition location, and the difference of the observed minus the calculated*) 
(*transitions.*) 
trtObs = Transpose[tObs]; 
AppendTo[trtObs,tCalculated] ; 
AppendTo[trtObs,tObserved-tCalculated]; 
Print [" " ] 
Print["|    Residuals     |"] 
Print [" " ] 
diff = Transpose[trtObs] 
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Appendix D : List of Transitions 

Upper Level (v = 2) Lower Level (v = 0) Locations 

Number J *fl Kc J *„ Kc Observed Calculated Difference 

1 2 0 2 3 0 3 3562.2749 3562.308 -0.03348 

2 3 0 3 4 0 4 3562.0408 3562.072 -0.03082 

3 5 0 5 6 0 6 3561.6036 3561.606 -0.00240 

4 6 0 6 7 0 7 3561.3811 3561.377 0.00396 

5 7 0 7 8 0 8 3561.1555 3561.151 0.00459 

6 8 0 8 9 0 9 3560.9355 3560.927 0.00818 

7 9 0 9 10 0 10 3560.7187 3560.706 0.01234 

8 10 0 10 11 0 11 3560.5006 3560.488 0.01258 

9 11 0 11 12 0 12 3560.2831 3560.272 0.01079 

10 12 0 12 13 0 13 3560.0674 3560.059 0.00818 

11 13 0 13 14 0 14 3559.8569 3559.849 0.00816 

12 14 0 14 15 0 15 3559.6468 3559.641 0.00592 

13 15 0 15 16 0 16 3559.4375 3559.436 0.00186 

14 16 0 16 17 0 17 3559.2319 3559.233 -0.00112 

15 17 0 17 18 0 18 3559.0222 3559.033 -0.01083 

16 18 0 18 19 0 19 3558.8179 3558.836 -0.01779 

17 19 0 19 20 0 20 3558.625 3558.641 -0.01599 

18 20 0 20 21 0 21 3558.4253 3558.449 -0.02368 

19 21 0 21 22 0 22 3558.2335 3558.26 -0.02618 

20 22 0 22 23 0 23 3558.044 3558.073 -0.02913 

21 23 0 23 24 0 24 3557.8503 3557.889 -0.03907 

22 2 2 3 3 3562.2146 3562.256 -0.04161 

23 3 3 4 4 3561.982 3562.022 -0.03996 

24 4 4 5 5 3561.7526 3561.79 -0.03770 

25 5 5 6 6 3561.571 3561.561 0.00977 

26 6 6 7 7 3561.3489 3561.335 0.01414 

27 7 7 8 8 3561.125 3561.111 0.01411 

28 8 8 9 9 3560.9004 3560.89 0.01075 

29 9 9 10 10 3560.6758 • 3560.671 0.00476 

30 10 10 11 11 3560.4608 3560.455 0.00571 

31 11 11 12 12 3560.2414 3560.242 -0.00040 

32 12 12 13 13 3560.025 3560.031 -0.00619 

33 19 19 20 20 3558.5987 3558.634 -0.03539 

34 2 1 3 2 3562.2146 3562.24 -0.02574 

35 3 2 4 3 3561.982 3562.001 -0.01897 

36 4 3 5 4 3561.7526 3561.764 -0.01162 

37 5 4 6 5 3561.5235 3561.53 -0.00658 

38 6 5 7 6 3561.3024 3561.299 0.00385 

39 7 6 8 7 3561.075 3561.07 0.00541 
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40 8 7 9 8 3560.8544 3560.843 0.01123 

41 11 10 12 11 3560.2035 3560.179 0.02461 

42 12 11 13 12 3559.982 3559.962 0.01966  • 

43 14 13 15 14 3559.556 3559.536 0.01974 

44 15 14 16 15 3559.328 3559.327 0.00135 

45 16 15 17 16 3559.12 3559.119 0.00075 

46 17 16 18 17 3558.902 3558.914 -0.01200 

47 2 2 1 3 2 2 3562.0408 3562.068 -0.02730 

48 3 2 2 4 2 3 3561.8045 3561.831 -0.02679 

49 4 2 3 5 2 4 3561.571 3561.597 -0.02609 

50 5 2 4 6 2 5 3561.3489 3561.365 -0.01660 

51 9 2 8 10 2 9 3560.48 3560.465 0.01491 

52 10 2 9 11 2 10 3560.2414 3560.246 -0.00503 

53 13 2 12 14 2 13 3559.5987 3559.606 -0.00702 

54 18 2 17 19 2 . 18 3558.5548 3558.588 -0.03298 

55 20 2 19 21 2 20 3558.1665 3558.198 -0.03113 

56 21 2 20 22 2 21 3557.966 3558.006 -0.04013 

57 22 2 21 23 2 22 3557.7746 3557.817 -0.04237 

58 23 2 22 24 2 23 3557.5863 3557.63 -0.04384 

59 2 2 0 3 2 1 3562.0408 3562.068 -0.02726 

60 3 2 1 4 2 2 3561.8045 3561.831 -0.02671 

61 4 2 2 5 2 3 3561.571 3561.597 -0.02593 

62 5 2 3 6 2 ' 4 3561.3489 3561.365 -0.01633 

63 6 2 4 7 2 5 3561.125 3561.136 -0.01109 

64 7 2 5 8 2 6 3560.9004 3560.909 -0.00909 

65 9 2 7 10 2 8 3560.48 3560.464 0.01612 

66 10 2 8 11 2 9 3560.2414 3560.245 -0.00342 

67 11 2 9 12 2 10 3560.025 3560.028 -0.00323 

68 12 2 > 10 13 2 11 3559.8092 3559.814 -0.00488 

69 13 2 11 14 2 12 3559.5987 3559.602 -0.00365 

70 14 2 12 15 2 13 3559.3844 3559.393 -0.00859 

71 15 2 13 16 2 14 3559.1726 3559.186 -0.01337 

72 16 2 14 17 2 15 3558.9614 3558.981 -0.01983 

73 17 2 15 18 2 16 3558.7545 3558.779 -0.02424 

• 74 18 2 16 19 2 17 3558.5548 3558.578 -0.02363 

75 19 2 17 20 2 18 3558.3557 3558.38 -0.02454 

76 21 2 19 22 2 20 3557.966 3557.99 -0.02391 

77 22 2 20 23 2 . 21 3557.7746 3557.798 -0.02299 

78 23 2 21 24 2 22 3557.5863 3557.607 -0.02074 

79 4 3 2 5 3 3 3561.269 3561.297 -0.02785 

80 5 3 3 6 3 4 3561.075 3561.065 0.00977 

81 6 3 4 7 3 5 3560.8544 3560.836 0.01821 

82 8 3 6 9 3 7 3560.388 3560.386 0.00212 

83 13 3 11 14 3 12 3559.328 3559.305 0.02336 
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84 14 3 12 15 3 13 3559.12 3559.096 0.02412 

85 15 3 13 16 3 14 3558.902 3558.89 0.01242 

86 21 3 19 22 3 20 3557.676 3557.701 -0.02539 

87 4 3 1 5 3 2 3561.269 3561.297 -0.02789 

88 5 3 2 6 3 3 3561.075 3561.065 0.00971 

89 6 3 3 7 3 4 3560.8544 3560.836 0.01812 

90 8 3 5 9 3 6 3560.388 3560.386 0.00196 

91 13 3 10 14 3 11 3559.328 3559.305 0.02292 

92 14 3 11 15 3 12 3559.12 3559.096 0.02361 

93 15 3 12 16 3 13 3558.902 3558.89 0.01185 

94 21 3 18 22 3 19 3557.6931 3557.702 -0.00921 

95 4 4 0 5 4 1 3560.8544 3560.877 -0.02247 

96 7 4 3 8 4 4 3560.2035 3560.19 0.01371 

97 8 4 4 9 4 5 3559.982 3559.966 0.01605 

98 11 4 7 12 4 8 3559.328 3559.31 0.01822 

99 12 4 8 13 4 9 3559.12 3559.096 0.02387 

100 13 4 9 14 4 10 3558.902 3558.885 0.01702 

101 17 4 13 18 4 14 3558.044 3558.065 -0.02102 

102 18 4 14 19 4 15 3557.8503 3557.866 -0.01576 

103 19 4 15 20 4 16 3557.645 3557.669 -0.02445 

104 22 4 18 23 4 19 3557.064 3557.093 -0.02939 

105 7 5 2 8 5 3 3559.6468 3559.65 -0.00354 

106 8 5 3 9 5 4 3559.4375 3559.427 0.01097 

107 12 5 7 13 5 8 3558.5548 3558.557 -0.00214 

108 13 5 8 14 5 9 3558.3557 3558.346 0.00983 

109 14 5 9 15 5 10 3558.1304 3558.137 -0.00690 

110 19 5 14 20 5 15 3557.1214 3557.131 -0.00957 

111 20 5 15 21 5 16 3556.9208 3556.937 -0.01600 

112 21 5 16 22 5 17 3556.7338 3556.745 -0.01113 

113 22 5 17 23 5 18 3556.5394 3556.555 -0.01590 

114 23 5 18 24 5 • 19 3556.3503 3556.368 -0.01759 

115 8 6 2 9 6 3 3558.7545 3558.768 -0.01330 

116 9 6 3 10 6 4 3558.5548 3558.547 0.00822 

117 11 6 5 12 6 6 3558.12 3558.112 0.00815 

118 13 6 7 14 6 8 3557.6931 3557.687 0.00582 

119 14 6 8 15 6 9 3557.4771 3557.479 -0.00166 

120 15 6 9 16 6 10 3557.2766 3557.273 0.00387 

121 16 6 10 17 6 11 3557.064 3557.069 -0.00515 

122 17 6 11 18 6 12 3556.8403 3556.868 -0.02770 

123 18 6 12 19 6 13 3556.6526 3556.669 -0.01667 

124 19 6 13 20 6 14 3556.4507 3556.473 -0.02220 

125 20 6 14 21 6 15 3556.249 3556.279 -0.02989 

126 22 6 16 23 6 17 3555.8663 3555.898 -0.03146 
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127 23 6 17 24 6 18 3555.6668 3555.711 -0.04377 

128 6 0 6 5 0 5 3564.537 3564.556 -0.01939 

129 9 0 9 8 0 8 3565.369 3565.351 0.01759 

130 10 0 10 9 0 9 3565.626 3565.621 0.00469 

131 12 0 12 11 0 11 3566.1774 3566.168 0.00907 

132 13 0 13 12 0 12 3566.4638 3566.445 0.01841 

133 14 0 14 13 0 13 3566.749 3566.725 0.02420 

134 16 0 16 15 0 15 3567.3 3567.291 0.00940 

135 17 0 17 16 0 16 3567.575 3567.577 -0.00195 

136 18 0 18 17 0 17 3567.8676 3567.866 0.00200 

137 19 0 19 18 0 18 3568.162 3568.157 0.00545 

138 20 0 20 19 0 19 3568.4468 3568.45 -0.00300 

139 22 0 22 21 0 21 3569.0757 3569.043 0.03242 

140 23 0 23 22 0 22 3569.3547 3569.344 0.01113 

141 24 0 24 23 0 23 3569.6808 3569.646 0.03453 

142 4 4 3 3 3563.9507 3563.968 -0.01700 

143 5 5 4 4 3564.21 3564.222 -0.01242 

144 7 7 6 6 3564.7257 3564.74 -0.01382 

■ 145 8 8 7 7 3564.9988 3565.002 -0.00311 

146 9 9 8 8 3565.2755 3565.267 0.00863 

147 11 11 10 10 3565.814 3565.805 0.00950 

148 13 13 12 12 3566.349 3566.353 -0.00351 

149 15 15 14 14 3566.919 3566.911 0.00801 

150 16 16 15 15 3567.1886 3567.194 -0.00560 

151 17 17 16 16 3567.4908 3567.48 0.01071 

152 20 20 19 19 3568.3606 3568.354 0.00650 

153 21 21 20 20 3568.6412 3568.651 -0.00980 

154 23 23 22 22 3569.2747 3569.253 0.02136 

155 24 24 23 23 3569.5628 3569.559 0.00391 

156 5 4 4 3 3564.2516 3564.251 0.00100 

157 6 5 5 4 3564.497 3564.514 -0.01669 

158 7 6 6 5 3564.775 3564.779 -0.00435 

159 8 7 7 6 3565.052 3565.048 0.00445 

160 9 8 8 7 3565.319 3565.318 0.00074 

161 10 9 9 8 3565.587 3565.591 -0.00444 

162 14 13 13 12 3566.69 3566.708 -0.01812 

163 16 15 15 14 3567.2634 3567.28 -0.01676 

164 17 16 16 15 3567.575 3567.569 0.00558 

165 18 17 17 16 3567.8676 3567.861 0.00684 

166 6 2 5 5 2 • 4 3564.3182 3564.317 0.00163 

167 8 2 7 7 2 6 3564.844 3564.845 -0.00055 

168 9 2 8 8 2 7 3565.1134 3565.112 0.00108 

169 10 2 9 9 2 8 3565.369 3565.383 -0.01360 

170 11 2 10 10 2 9 3565.6682 3565.655 0.01285 
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171 12 2 11 11 2 10 3565.919 3565.931 -0.01156 

172 16 2 15 15 2 14 3567.072 3567.056 0.01650 

173 17 2 16 16 2 15 3567.3365 3567.343 -0.00614 

174 18 2 17 17 2 16 3567.6452 3567.632 0.01311 

175 19 2 18 18 2 17 3567.9288 3567.924 0.00498 

176 20 2 19 19 2 18 3568.2167 3568.218 -0.00110 

177 22 2 21 21 2 20 3568.854 3568.812 0.04159 

178 24 2 23 23 2 22 3569.448 3569.416 0.03232 

179 6 2 4 5 2 3 3564.3182 3564.317 0.00131 

180 8 2 6 7 2 5 3564.844 3564.845 -0.00130 

181 9 2 7 8 2 6 3565.1134 3565.113 0.00000 

182 10 2 8 9 2 7 3565.369 3565.384 -0.01506 

183 11 2 9 10 2 8 3565.6682 3565.657 0.01091 

184 12 2 10 11 2 9 3565.919 3565.933 -0.01405 

185 13 2 11 12 2 10 3566.2243 3566.211 0.01297 

186 15 2 13 14 2 12 3566.794 3566.775 0.01867 

187 16 2 14 15 2 13 3567.072 3567.061 0.01102 

188 17 2 15 16 2 14 3567.369 3567.349 0.02001 

189 18 2 16 17 2 15 3567.6452 3567.639 0.00587 

190 22 2 20 21 2 19 3568.854 3568.823 0.03143 

191 24 2 22 23 2 21 3569.478 3569.426 0.05190 

192 4 3 2 3 3 1 3563.4948 3563.499 -0.00400 

193 5 3 3 4 3 2 3563.742 3563.756 -0.01447 

194 6 3 4 5 3 3 3564.0266 3564.017 0.00988 

195 8 3 6 7 3 5 3564.537 3564.545 -0.00791 

196 11 3 9 10 3 8 3565.369 3565.356 0.01280 

197 12 3 10 11 3 9 3565.626 3565.632 -0.00562 

198 14 3 12 13 3 11 3566.1774 3566.19 -0.01242 

199 15 3 13 14 3 12 3566.4638 3566.473 -0.00874 

200 16 3 14 15 3 13 3566.749 3566.758 -0.00863 

201 17 3 15 16 3 14 3567.0339 3567.045 -0.01116 

202 18 3 16 17 3 15 3567.3365 3567.335 0.00170 

203 19 3 17 18 3 16 3567.6452 3567.627 0.01840 

204 20 3 18 19 3 17 3567.9288 3567.921 0.00778 

205 4 3 1 3 3 0 3563.4948 3563.499 -0.00397 

206 5 3 2 4 3 1 3563.742 3563.756 -0.01442 

207 6 3 3 5 3 2 3564.0266 3564.017 0.00997 

208 8 3 5 7 3 4 3564.537 3564.545 -0.00768 

209 11 3 8 10 3 7 3565.369 3565.356 0.01346 

210 12 3 9 11 3 8 3565.626 3565.631 -0.00475 

211 14 3 11 13 3 10 3566.1774 3566.188 -0.01098 

212 15 3 12 14 3 11 3566.4638 3566.471 -0.00695 

213 16 3 13 15 3 12 3566.749 3566.755 -0.00643 

214 17 3 14 16 3 13 3567.0339 3567.042 -0.00850 
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215 18 3 15 17 3 14 3567.3365 3567.332 0.00488 

216 19 3 16 18 3 15 3567.6452 3567.623 0.02216 

217 20 3 17 19 3 16 3567.9288 3567.917 0.01218 

218 8 4 4 7 4 3 3564.121 3564.125 -0.00434 

219 9 4 5 8 4 4 3564.3835 3564.393 -0.00981 

220 10 4 6 9 4 5 3564.675 3564.664 0.01120 

221 11 4 7 10 4 6 3564.923 3564.937 -0.01379 

222 12 4 8 11 4 7 3565.2327 3565.212 0.02043 

223 13 4 9 12 4 8 3565.5081 3565.49 0.01789 

224 14 4 10 13 4 9 3565.7726 3565.771 0.00201 

225 15 4 11 14 4 10 3566.0412 3566.053 -0.01219 

226 16 4 12 15 4 11 3566.349 3566.339 0.01043 

227 18 4 14 17 4 13 3566.9124 3566.916 -0.00355 

228 20 4 16 19 4 15 3567.527 3567.502 0.02452 

229 21 4 17 20 4 16 3567.809 3567.799 0.00992 

230 22 4 18 21 4 17 3568.131 3568.098 0.03314 

231 23 4 19 22 4 18 3568.4157 3568.399 0.01694 

232 24 4 20 23 4 19 3568.7286 3568.702 0.02686 

233 10 5 5 9 5 4 3564.121 3564.125 -0.00386 

234 11 5 6 10 5 5 3564.3835 3564.398 -0.01438 

235 12 5 7 11 5 6 3564.675 3564.673 0.00163 

236 13 5 8 12 5 7 3564.9627 3564.951 0.01138 

237 14 5 9 13 5 8 3565.2327 3565.232 0.00101 

238 15 5 10 14 5 9 3565.5081 3565.514 -0.00635 

239 16 5 11 15 5 10 3565.814 3565.8 0.01443 

240 18 5 13 17 5 12 3566.3996 3566.377 0.02281 

241 19 5 14 18 5 13 3566.69 3566.669 0.02119 

242 20 5 15 19 5 14 3566.9713 3566.963 0.00825 

243 21 5 16 20 5 15 3567.2634 3567.259 0.00392 

244 22 5 17 21 5 16 3567.575 3567.558 0.01696 

245 23 5 18 22 5 17 3567.8676 3567.859 0.00890 

246 7 6 1 6 6 . 0 3562.6702 3562.663 0.00737 

247 8 6 2 7 6 1 3562.9358 3562.928 0.00737 

248 11 6 5 10 6 4 3563.742 3563.74 0.00155 

249 15 6 9 14 6 8 3564.8824 3564.858 0.02444 

250 16 6 10 15 6 9 3565.1459 3565.143 0.00250 

251 18 6 12 17 6 11 3565.735 3565.721 0.01368 

252 19 6 13 18 6 12 3566.0412 3566.014 0.02745 

253 22 6 16 21 6 15 3566.9124 3566.904 0.00791 

254 24 6 18 23 6 17 3567.527 3567.509 0.01788 

255 1 1 0 1 1 1 3562.979 3562.982 -0.00338 

256 3 1 2 3 1 3 3563.022 3563.023 -0.00051 

257 4 1 3 4 1 4 3563.052 3563.055 -0.00262 

258 6 1 5 6 1 6 3563.1354 3563.143 -0.00750 
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259 9 1 8 9 1 9 3563.339 3563.335 0.00352 

260 10 1 9 10 1 10 3563.4141 3563.416 -0.00161 

261 11 1 10 11 1 11 3563.4948 3563.504 -0.00917 

262 13 1 12 13 1 13 3563.685 3563.705 -0.01951 

263 6 2 4 6 2 5 3562.844 3562.849 -0.00544 

264 8 2 6 8 2 7 3562.883 3562.889 -0.00648 

265 10 2 8 10 2 9 3562.9358 3562.941 -0.00507 

266 11 2 9 11 2 10 3562.979 3562.971 0.00803 

267 13 2 11 13 2 12 3563.052 3563.04 0.01173 

268 18 2 16 18 2 17 3563.289 3563.27 0.01904 

269 3 3 0 3 3 1 3562.5217 3562.51 0.01197 

270 4 3 1 4 3 2 3562.5217 3562.52 0.00157 

271 5 3 2 5 3 3 3562.5217 3562.533 -0.01140 

272 9 3 6 9 3 7 3562.601 3562.61 -0.00925 

273 11 3 8 11 3 9 3562.6702 3562.664 0.00665 

274 4 4 0 4 4 1 3562.0892 3562.1 -0.01109 

275 5 4 1 5 4 2 3562.0892 3562.113 -0.02413 

276 7 4 3 7 4 4 3562.15 3562.147 0.00282 

277 8 4 4 8 4 5 3562.15 3562.168 -0.01796 

278 10 4 6 10 4 7 3562.2146 3562.217 -0.00257 

279 12 4 8 12 4 9 3562.2749 3562.276 -0.00158 

280 17 4 13 17 4 14 3562.477 3562.468 0.00923 

281 18 4 14 18 4 15 3562.5217 3562.513 0.00850 

282 22 4 18 22 4 19 3562.745 3562.718 0.02724 

283 5 5 0 5 5 1 3561.571 3561.574 -0.00304 

284 7 5 2 7 5 3 3561.6036 3561.608 -0.00429 

285 10 5 5 10 5 6 3561.666 3561.678 -0.01175 

286 12 5 7 12 5 8 3561.7526 3561.737 0.01580 

287 17 5 12 17 5 13 3561.933 3561.926 0.00670 

288 6 6 0 6 6 1 3560.9355 3560.931 0.00423 

289 7 6 1 7 6 2 3560.9355 3560.95 -0.01408 

290 8 6 2 8 6 3 3560.972 3560.97 0.00154 

291 12 6 6 12 6 7 3561.075 3561.08 -0.00453 

292 13 6 7 13 6 8 3561.125 3561.113 0.01191 

293 15 6 9 15 6 10 3561.201 3561.188 0.01339 

294 20 6 14 20 6 15 3561.4323 3561.416 0.01646 
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